CNC 8055 MC Operating Manual

INDEX

VERSION HISTORY

INTRODUCCIÓN

Safety conditions	3
Reshipment conditions	
Fagor documentation for the 8055MC CNC	
Contents of this manual	

1. CONFIGURATIONS

1.1	With 9" Amber, 10" Color, 11" LCD or 14" Color monitor	.2
1.2	With 14" color monitor with alphanumeric keyboard	.3
1.3	With 11" LCD monitor with full keyboard	.4
1.4	Monitors	. 5
1.4.1	9" Amber monitor	. 5
1.4.2	10" Color monitor	.7
1.4.3	11" LCD monitor	.9
1.4.4	11" LCD monitor with full keyboard 1	1
1.4.5	14" Color Monitor	13
1.4.6	14" color monitor with alphanumeric keyboard 1	5
1.5	Specific MC model KEYBOARD 1	
1.6	Keyboard switcher board 1	9

2. GENERAL CONCEPTS

2.1	Keyboard	.1
2.2	General	
2.2.1	General logic outputs of the CNC	.4
2.3	Power-up	
2.4	Operating in 8055M mode with an MC keyboard	.6
2.5	Video off	

3. OPERATING IN JOG MODE

3.1	Introduction	.2
3.2	Axis Control	6
3.2.1	Work Units	6
3.2.2	Coordinate preset	6
	Handling the Feedrate of the Axes (F)	
	Search for Machine reference zero (home)	
	Manually moving the machine	

3.4.1	Continuous Movement	8
3.4.2	Incremental movement	9
3.4.3	Movement by means of Electronic Handwheel	
3.4.4	Feed handwheel	11
3.4.5	Master Handwheel	
3.5	Tool control	
3.5.1	Tool change	14
3.5.1.1	Variable tool change point	15
3.5.2	Tool calibration	
3.5.2.1	Define the tool in the tool table	
3.5.2.2	Tool measurement	
3.5.2.3	Modify values while in execution	19
3.6	Spindle control	
3.7	Control of external devices	21
3.8	ISO code management	

4. WORKING WITH OPERATIONS OR CYCLES

4.1	Operation editing mode	2
4.1.1	Definition of the machining conditions	
4.1.2	Safety plane	3
4.2	Simulation and execution of the operation	
4.3	Profile milling operation	
4.3.1	Defining data	
4.3.2	Profile definition (level 2)	
4.4	Surface Milling operation	8
4.4.1	Defining data	8
4.5	Pocket cycle with a profile	.10
4.5.1	Data definition	.12
4.5.2	Profile definition	.13
4.5.3	Examples of profile definition	.14
4.6	Rectangular and Circular Boss cycles	.16
4.6.1	Data definition	.17
4.7	Rectangular (2 levels) and Circular pocket cycles	.18
4.7.1	Data definition	
4.8	Positioning (2 levels)	.21
4.8.1	Data definition	.22
4.9	Boring operation	.23
4.9.1	Data definition	.23
4.10	Reaming operation	.24
4.10.1	Data definition	.24
4.11	Tapping operation	.25
4.11.1	Data definition	.26
4.12	Drilling (2 levels) and Center punching operations	.27
4.12.1	Data definition	
4.13	Multiple positioning	.30
4.13.1	Multiple positioning at random points	.31
4.13.2	Multiple positioning in a straight line	.32
4.13.3	Multiple positioning in an arc (bolt-hole pattern)	.34
4.13.4	Multiple positioning in a parallelogram pattern	.36
4.13.5	Multiple positioning in a grid pattern	.37

5. STORAGE OF PROGRAMS

5.1	List of stored programs	.2
5.2	See content of a program	.3
5.2.1	Seeing the operations in detail	.3
5.3	Edit a new part-program	
5.3.1	Storage of an operation or cycles	.4
5.4	Erasing a part-program	.5
5.5	Copy a part-program in another	.5
5.6	Modifying a part-program	.6
5.6.1	Erasing an operation	.6
5.6.2	Moving an operation to another position	.6
5.6.3	Adding or inserting a new operation	.7
5.6.4	Modifying an already existing operation	.7

6. EXECUTION AND SIMULATION

6.1	Simulating or executing an operation or cycle	2
6.2	Simulating or executing a part-program	
6.2.1	Simulating or executing a section of a part-program	
	Simulating or executing a stored operation	
6.4	Execution Mode	
6.4.1	Tool inspection	5
6.5	Graphic representation	6

APPENDIX

Keyboard selection	3
Key codes	5
Logic outputs for key status	7
Key inhibiting codes	9

VERSION HISTORY (M)

(MILL MODEL)

Date: May 1999

Software Version: 3.0x

FEATURE	AFFECTED MANUAL & CHAPTERS		
Portuguese language	Installation Manual	Chapter 3	
Tangential Control	Installation Manual Programming Manual	Chapters 9, 10, Appendix Chapters 6, 13, Appendix	
Incline planes. The software travel limits are monitored in JOG movements.			
PLC. User registers R1 through R499	Installation Manual Programming Manual	Chapters 6, 7, Appendix Chapter 13	
CNC status screen	Operation Manual	Chapter 8	
Hard disk (HD)	Installation Manual	Chapters 1, 3, Appendix	
HD Diagnosis	Operation Manual	Chapter 12	
Integrate the HD into an outside PC network	Installation Manual	Chapter 3	
Consult directories, delete, rename and copy programs in the same or other device	Operation Manual Programming Manual	Chapters 1, 7 Chapter 1	
Ejecution and simulacion from RAM memory, Memkey Card, HD or serial line.	Operation Manual	Chapters 1, 3,	
It is possible to execute (EXEC) and open (OPEN) a program (to be edited) stored in any device.	Programming Manual	Chapter 14, Appendix	
MC option. Tool calibration screen. When defining R and L; I and K are initialized If I=0 and K=0; I and K are initialized	Operation Manual	Chapter 3	
MC option. ISO management, also as MDI	MC Operation Manual	Chapter 3	
MC option. New way to handle safety planes.	MC Operation Manual	Chapter 4	
MC option. New codes for specific keys.	MC Operation Manual	Appendix	

2 - Version history (M)

INTRODUCTION

www.EngineeringBooksPdf.com

Introduction - 1

SAFETY CONDITIONS

Read the following safety conditions in order to prevent accidents to staff and damage to this product and any products connected to it.

The equipment may only be repaired by Fagor Automation authorized staff.

Fagor Automation will not assume responsibility for any physical or material harm stemming from failure to comply with these basic safety norms.

Precautions against accidents

Before powering up the equipment make sure it is connected to ground

In order to prevent electric shocks make sure the ground connections have been properly made.

Do not work in damp atmospheres

To prevent electric shocks always work in atmospheres with a relative humidity of under 90% with no condensation at 45° C.

Do not work in explosive atmospheres

To avoid danger, physical harm or damage, do not work in explosive atmospheres.

Precautions to avoid damaging the product

Operating environment

This equipment is prepared for use in Industrial Environments, complying with directives and standards in force in the European Union.

Fagor Automation will not assume any responsibility for any damage that it may cause or undergo if it is set up in any other type of conditions (residential or household environments).

Install the equipment in a suitable place

Wherever possible, the CNC installation should be made well away from cooling liquids, chemicals, or where it may be subject to impacts that could damage this.

The equipment complies with European electromagnetic compatibility directives. We nevertheless recommend keeping it away from sources of electromagnetic disturbance, such as:

- Powerful loads connected to the same mains as the equipment.
- Nearby portable transmitter (Radiotelephones, amateur radio transmitters).

www.EngineeringBooksPdf.com

- Nearby radio/TV transmitters.
- Nearby arc welding machines.
- Nearby high voltage lines.
- Etc.

Environmental Conditions

The room temperature should be maintained in operating conditions should be between $+5^{\circ}C$ and $+45^{\circ}C$.

The room temperature that should be maintained in non-operating conditions should be between -25 $^\circ C$ and 70 $^\circ C$.

Protection devices in the equipment itself

Power Source Module

Has two fast 3.15 Amp./ 250V. external fuses (F) fitted for protecting the mains input.

Axis Module

All the digital input/outputs are protected by means of 1 fast 3.15 Amp./250V. external fuse (F) against overvoltages from the external power sources (over 33 Vdc.) and against connection of the power source the wrong way round.

Input-output Module

All the digital input/outputs are protected by means of 1 fast 3.15 Amp./250V. external fuse (F) against overvoltages from the external power sources (over 33 Vdc.) and against connection of the power source the wrong way round.

Input-output and Copy Module

All the digital input/outputs are protected by means of 1 fast 3.15 Amp./ 250V. fuse (F) against overvoltages from the external power sources (over 33 Vdc.) and against connection of the power source the wrong way round.

Ventilator module

Has 1 or 2 external fuses fitted depending on the model. The fuses are fast (F), 0.4 Amp./ 250V. for protecting the fans.

Monitor

The type of fuse depends on the type of monitor. See the identification label on the equipment itself.

Precautions to be taken during repairs

Do not touch the inside of the equipment

Only authorized Fagor Automation staff may handle the items located inside the equipment.

Do not touch the connectors when the equipment is connected to the mains. Before touching the connectors (input/outputs, feedback etc) make sure that the equipment is not connected to the mains.

Safety symbols

Symbols that may appear in the manual

WARNING Symbol This goes with text describing action or operations that could give rise to accidents or damage of the equipment.

Symbols that may be found on the product

WARNING Symbol This goes with text describing action or operations that could give rise to accidents or damage of the equipment.

ELECTRIC SHOCK Symbol Means that the point indicated could be under electrical voltage.

www.EngineeringBooksPdf.com

GROUND PROTECTION Symbol Means that the point indicated must be connected up to the central machine ground point for protecting people and equipment.

RESHIPMENT CONDITIONS

If the Monitor of the Central Processing Unit has to be sent back, please pack this in its original box with the original packing material. If the original packing material is not available, please pack this as follows:

- 1.- Obtain a cardboard box whose 3 internal sizes should be at least 15 cm (6 inches) larger than the equipment. The cardboard used for the box should withstand 170 Kg (375 pounds).
- 2.- If this is to be sent to a Fagor Automation office to be repaired, enclose a label with the device stating its owner, address, name of the person to be contacted, type of device, series number, symptoms and brief description of the fault.
- 3.- Wrap the equipment in a polyethylene roll or similar material to protect this.

If the monitor is to be shipped, provide special protection for the glass part of the screen.

- 4.- Pad the equipment in the cardboard box by filling this with polyurethane foam on all sides.
- 5.- Seal the cardboard box with packing tape or industrial staples.

Introduction - 5

FAGOR DOCUMENTATION FOR THE 8055MC CNC

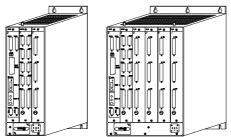
The 8055MC CNC is based on the 8055M CNC, and has inside all the features of the 8055T CNC plus the specific features of the MC mode.

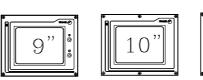
For this reason, it has the specific documentation for this model and all the documents for the 8055M CNC model.

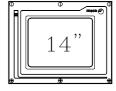
CNC 8055 OEM Manual	For the manufacturer of the machine or the person in charge of carrying out the installation and set up of the CNC.		
	This is the same for models 8055-M, 8055-T and 8055-MC. It has the Installation manual inside.		
CNC 8055-M USER Manual	For the final user, that is, the person who is going to work with the CNC in the 8055-M mode.		
	It has 2 manuals inside: Operation Manual Programming manual describing how to operate the CNC. describing how to program the CNC.		
CNC 8055-MC USER Manual	This is for the final user, meaning the person who is going to work with the CNC in the 8055-MC mode.		
DNC 8050 Software Manual	For the persons who are to use the DNC 8050 communication software option.		
DNC 8050 Protocol Manual	For those who wish to make their own DNC communication, without using the DNC 8050 communication software option.		
FLOPPY DISK Manual	For those who use the Fagor disc drive. This manual shows how said drive should be used.		

CONTENTS OF THIS MANUAL

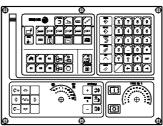
This manual is made up of the following sections:


Index History of versions Introduction Summary of the safety conditions. ReshipmentConditions. List of Fagor Documents for the 8055 CNC. Contents of this Manual. Chapter 1 Configurations. Explains the 2 possible configurations, the basic one and the extended one. Shows how the connection of the different items should be made and the characteristics of each of these. Chapter 2 General Concepts. Keyboard layout and programs supplied by Fagor Automation. Variables and parameters specified for the 8055MC model. Describes the possibilities for using 1, 2 o 3 electronic handwheels. How to carry out CNC power up and how to access 8055M operating mode. Chapter 3 Operating in manual mode. Gives the values displayed by the CNC in this operating mode. How to select the operating units, axis feedrate, etc.. How to make a search for machine reference zero (home). Moving the machine manually or by means of electronic handwheels. Tool Control. Tool changing, calibration and measuring. Spindle Control in rpm and at Constant surface speed. Control of the external devices. Chapter 4 Operating with operations or cycles. Shows how to select each of the operations or cycles. Explains how to define all the data for each of the operations. Shows how to define the machining conditions for the operation. Chapter 5 Storing programs. Shows how to access the list of programs stored. Explains how to see the content of a program or one of its operations Explains how to edit, erase or copy a new part-program. Shows how to modify a part-program or one of its operations. Chapter 6 Execution and simulation Describes how to simulate or execute an operation or part-program. Appendix Selection of keyboards in the extended configuration. Key codes, to be handled in the PLC

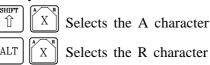

1. CONFIGURATIONS

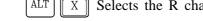

The CNC 8055MC is modular and must have the following elements:

Central Unit (CPU): Is located usually in the electrical cabinet and there are 2 models: for 3 and 6 modules. For further information, see the Installation manual Chapter 1.



There are several models: 9" Amber, 10" Color, 11" LCD and 14" Color. Monitor: The dimensions, enclosures and connections them all are described later on in this chapter.



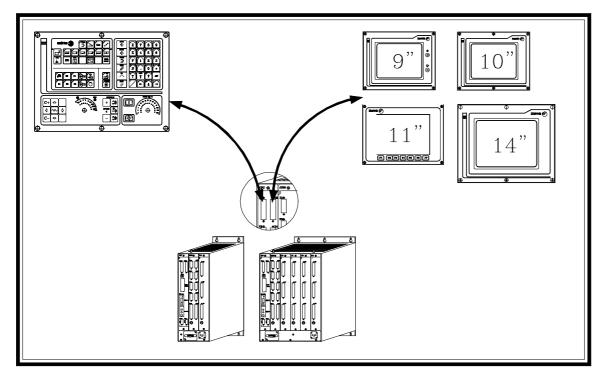


Keyboard: There is a specific keyboard to operate it in MC mode. Its dimensions and connections are described later on in this chapter.

When operating in "not MC" mode (CNC installation and start-up and standard 8055 operating mode) the access to the alphanumeric keys is rather cumbersome because one must press 2 keys for the CNC to assume the desired one.

In this cases, the following should be used:

a) The MC keyboard and a 14" color monitor with alphanumeric keyboard



b) The 11" LCD monitor with full keyboard. The MC keyboard is not required.

1.1 WITH 9" AMBER, 10" COLOR, 11" LCD OR 14" COLOR MONITOR

Central Unit - Specific MC keyboard connection

It is done through connector X1 of the CPU module. Fagor Automation supplies the cable for this connection.

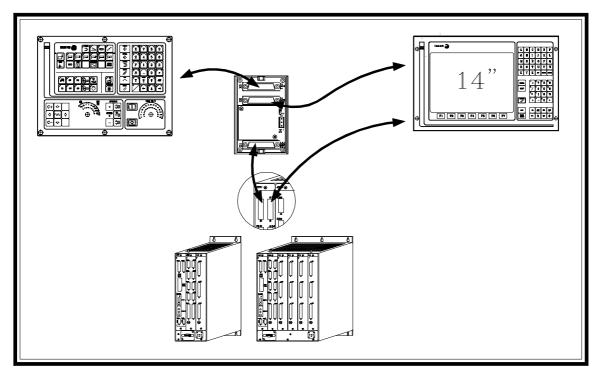
The characteristics of the connector are described in Chapter 1 of the Installation module (CNC configuration) in the section regarding the CPU module.

The dimensions, enclosure and connector location on the keyboard is described later on in this chapter.

Central Unit-Monitor connection

It is done through connector X2 of the CPU module. Fagor Automation supplies the cable for this connection.

The characteristics of the connector are described in Chapter 1 of the Installation module (CNC configuration) in the section regarding the CPU module.


The dimensions, enclosure and connector location on the keyboard is described later on in this chapter.

Configuration setting.

General machine parameter CUSTOMTY (P92) = 0

1.2 WITH 14" COLOR MONITOR WITH ALPHANUMERIC KEYBOARD

Central Unit - Keyboard connection

It is done through connector X1 of the CPU module and through the keyboard switcher board.

Fagor Automation supplies the cables for this connection.

The characteristics of the connector are described in Chapter 1 of the Installation module (CNC configuration) in the section regarding the CPU module.

The dimensions, enclosure and connector location on the keyboard is described later on in this chapter.

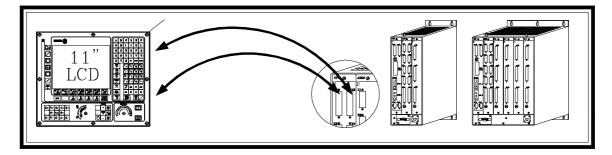
The dimensions, connectors of the keyboard switcher board as well as how to select the keyboard active at the time is described later on in this chapter.

Central Unit - Monitor connection

It is done through connector X2 of the CPU module. Fagor Automation supplies the cable for this connection.

The characteristics of the connector are described in Chapter 1 of the Installation module (CNC configuration) in the section regarding the CPU module.

The dimensions, enclosure and connector location on the keyboard is described later on in this chapter.


www.EngineeringBooksPdf.com

Configuration setting

General machine parameter CUSTOMTY (P92) = 0

1.3 WITH 11" LCD MONITOR WITH FULL KEYBOARD

Central Unit - Monitor / Keyboard

It is connected to the keyboard through connector X1 of the CPU module and to the monitor through connector X2 of the CPU module.

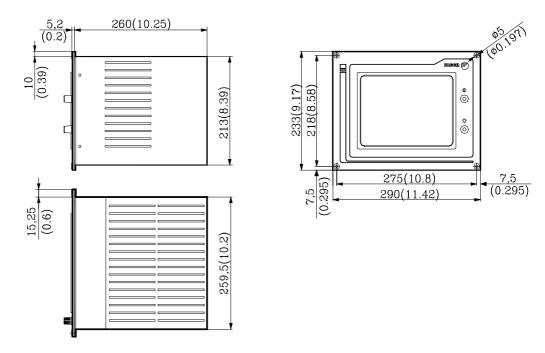
Fagor Automation supplies the cables for these connections.

The characteristics of the connectors are described in Chapter 1 of the Installation module (CNC configuration) in the section regarding the CPU module.

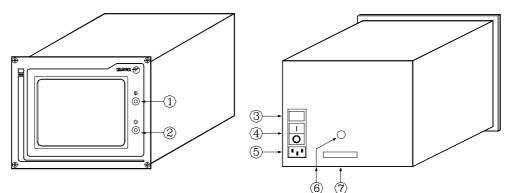
The dimensions, enclosure and connection of the Monitor / Keyboard is described later on in this chapter.

Configuration setting.

General machine parameter CUSTOMTY (P92) = 255



Configurations
 Monitors
 9" Amber Monitor

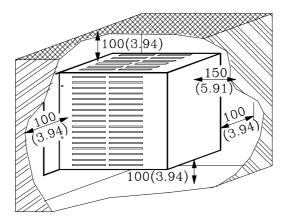

1.4 MONITORS

1.4.1 9" AMBER MONITOR

Dimensions in mm (inches):

Elements:

- 1.- Contrast setting knob
- 2.- Brightness setting knob
- 3.- Mains fuses. 2 fast ones (F), 1 per mains phase, of 3.15Amp./250V for mains protection.
- 4.- ON/OFF switch
- 5.- Mains plug. The plug provided should be used to connect it to 220V AC and ground.
- 6.- Ground terminal. Used to connect the general machine ground. Metric 6mm.

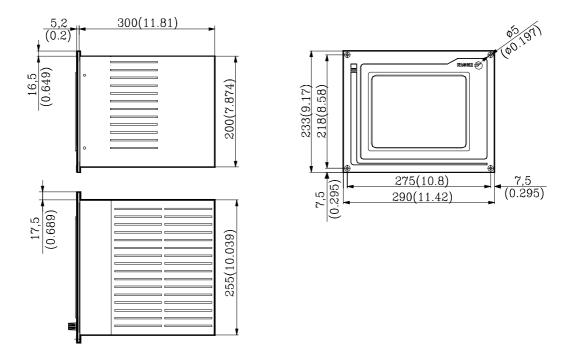

www.EngineeringBooksPdf.com

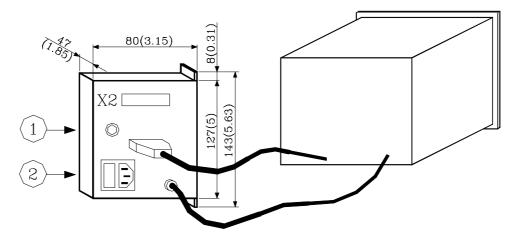
7.- 25-pin SUB-D type male connector to connect it with the Central Unit.

Enclosure:

In order to guarantee proper ambient conditions, the shortest distance, in millimeters, that should be left between each of the Monitor walls and the enclosure in which this is placed, must be as follows:

When a fan is used to improve the ventilation of the enclosure a fan with direct current motor should be used, as alternating current (AC) motors product magnetic fields which could distort the images displayed on the screen.

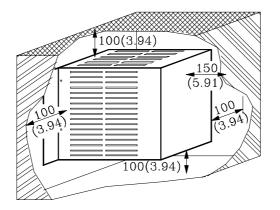

The temperature inside the enclosure should be between 0 and 50°C (32 to 122°F).


1. Configurations1.4 **Monitors** 1.4.2 10" Color Monitor

10" COLOR MONITOR 1.4.2

Dimensions in mm (inches):

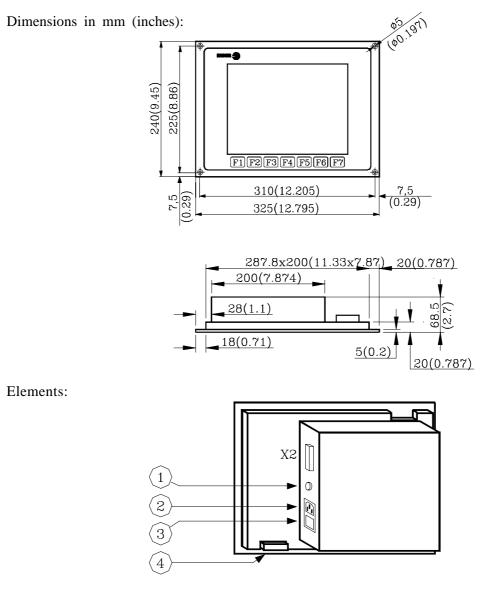
Elements:



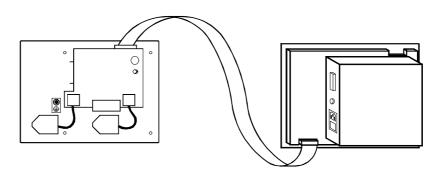
- Mains plug. The plug provided should be used to connect it to 220V AC and ground. Ground terminal. Used to connect the general machine ground. Metric 6mm. 1-
- 2-
- X2- 25-pin SUB-D type male connector to connect it with the Central Unit.

Enclosure:

In order to guarantee proper ambient conditions, the shortest distance, in millimeters, that should be left between each of the Monitor walls and the enclosure in which this is placed, must be as follows:

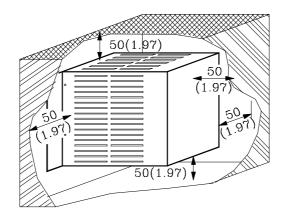


When a fan is used to improve the ventilation of the enclosure a fan with direct current motor should be used, as alternating current (AC) motors product magnetic fields which could distort the images displayed on the screen.


The temperature inside the enclosure should be between 0 and 50°C (32 to 122°F).

1.4.3 11" LCD MONITOR

- 1- Mains plug. The plug provided should be used to connect it to 220V AC and ground.
- 2- Ground terminal. Used to connect the general machine ground. Metric 6mm.
- 3.- ON/OFF power switch.
- 4- 25-pin SUB-D type female connector to connect it with the Keyboard.



X2 25-pin SUB-D type male connector to connect the video cables to the Central Unit.

FAGOR 3

Enclosure:

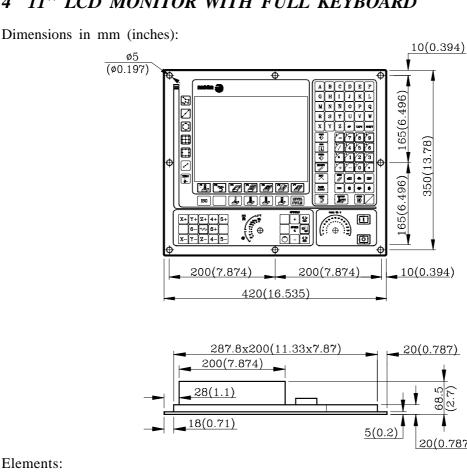
In order to guarantee proper ambient conditions, the shortest distance, in millimeters, that should be left between each of the Monitor walls and the enclosure in which this is placed, must be as follows:

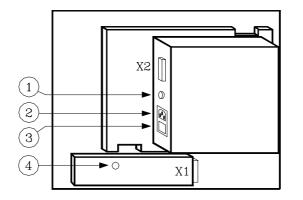
When a fan is used to improve the ventilation of the enclosure a fan with direct current motor should be used, as alternating current (AC) motors product magnetic fields which could distort the images displayed on the screen.

The temperature inside the enclosure should be between 0 and 50°C (32 to 122°F).

Note:

Defective Pixels.

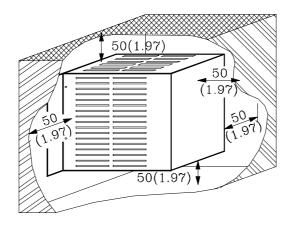

Due to the current status of the Color TFT LCD technology, all manufacturers consider good LCDs those having a certain number of defective pixels. The widely accepted criteria are basically: the number of defective pixels or sub-pixels and their concentration on the LCD surface.


350(13.78)

20(0.787)

11" LCD MONITOR WITH FULL KEYBOARD 1.4.4

Elements:



- 1.- Ground terminal. Used to connect the general ground of the machine. It is metric 6mm.
- 2.- Mains plug for connecting 220V AC and ground.
- 3.- ON/OFF Power switch
- 4.- Buzzer.
- X1 25-pin SUB-D type female connector to connect keyboard cable to the Central Unit.
- X2 25-pin SUB-D type male connector to connect the video cable to the Central Unit.

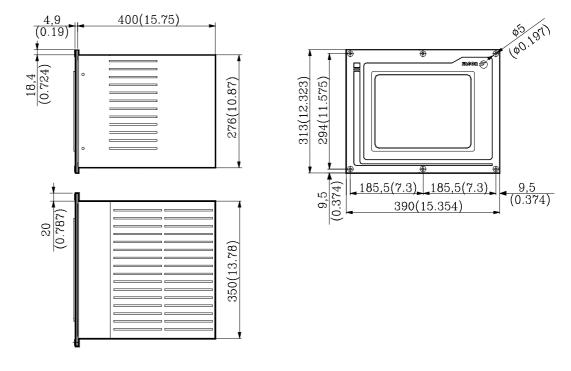
Enclosure:

In order to guarantee proper ambient conditions, the shortest distance, in millimeters, that should be left between each of the Monitor walls and the enclosure in which this is placed, must be as follows:

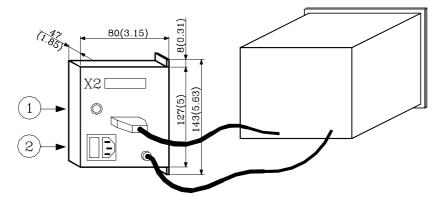
When a fan is used to improve the ventilation of the enclosure a fan with direct current motor should be used, as alternating current (AC) motors product magnetic fields which could distort the images displayed on the screen.

The temperature inside the enclosure should be between 0 and 50°C (32 to 122°F).

Note:


Defective Pixels.

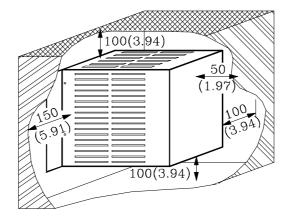
Due to the current status of the Color TFT LCD technology, all manufacturers consider good LCDs those having a certain number of defective pixels. The widely accepted criteria are basically: the number of defective pixels or sub-pixels and their concentration on the LCD surface.


Configurations
 Monitors
 1.4.5 14" Color monitor

1.4.5 14" COLOR MONITOR

Dimensions in mm (inches):

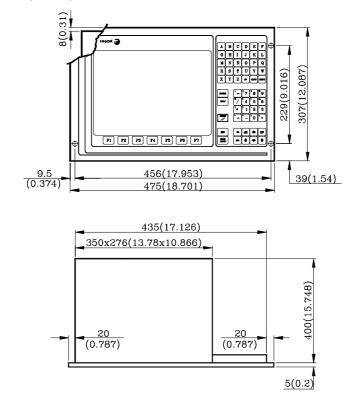
Elements:



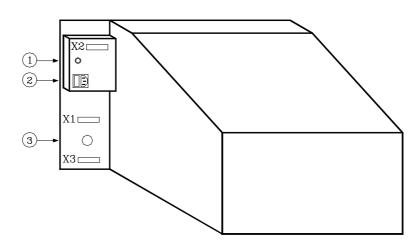
- 1.- Ground terminal. Used to connect the general ground of the machine. It is metric 6mm.
- 2.- Mains plug for connecting 220V AC and ground.
- X2 25-pin SUB-D type male connector to connect the video cable to the Central Unit.

Enclosure:

In order to guarantee proper ambient conditions, the shortest distance, in millimeters, that should be left between each of the Monitor walls and the enclosure in which this is placed, must be as follows:


When a fan is used to improve the ventilation of the enclosure a fan with direct current motor should be used, as alternating current (AC) motors product magnetic fields which could distort the images displayed on the screen.

The temperature inside the enclosure should be between 0 and 50°C (32 to 122°F).

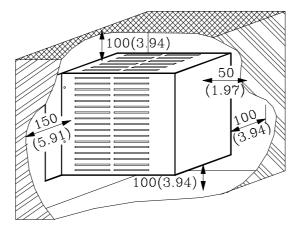


1.4.6 14" COLOR MONITOR WITH ALPHANUMERIC KEYBOARD

Dimensions in mm (inches):

Elements:

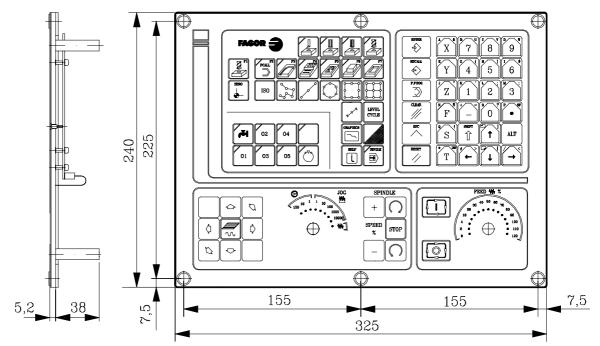
- 1.- Ground terminal. Used to connect the general ground of the machine. It is metric 6mm.
- 2.- Mains plug for connecting 220V AC and ground.
- 3.- Buzzer.
- X1 25-pin SUB-D type female connector to connect keyboard cable to the Central Unit.
- X2 25-pin SUB-D type male connector to connect the video cable to the Central Unit.


www.EngineeringBooksPdf.com

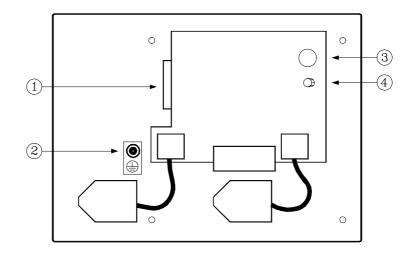
X3 Reserved.

Enclosure:

In order to guarantee proper ambient conditions, the shortest distance, in millimeters, that should be left between each of the Monitor walls and the enclosure in which this is placed, must be as follows:


When a fan is used to improve the ventilation of the enclosure a fan with direct current motor should be used, as alternating current (AC) motors product magnetic fields which could distort the images displayed on the screen.

The temperature inside the enclosure should be between 0 and 50°C (32 to 122°F).



1.5 SPECIFIC MC MODEL KEYBOARD

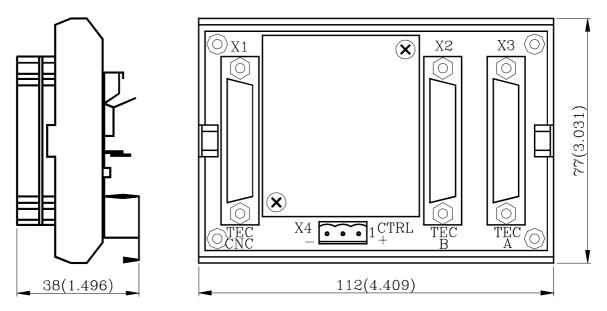
Dimensions in mm (inches):

Elements:

- 1.- 25-pin SUB-D type female connector to connect the keyboard with the Central Unit or with the keyboard switcher board.
- 2.- Ground terminal.
- 3.- Buzzer
- 4.- Buzzer volume adjusting potentiometer

Enclosure:

The keyboard must be mounted as indicated below:



1.6 KEYBOARD SWITCHER BOARD

It must be used when having an MC keyboard and a 14" color monitor with alphanumeric keyboard.

It is used to select the keyboard attended to by the Central Unit: the MC keyboard or the one at the monitor.

Dimensions in mm (inches) and elements:

- X1 25-pin SUB-D type female connector for connection with the Central Unit.
- X2 25-pin SUB-D type female connector for connection with the keyboard of the monitor.
- X3 25-pin SUB-D type female connector for connection with the MC keyboard.
- X4 3-pin WEIDMÜLLER type male connector used for selecting the keyboard attended to by the Central Unit.

X4		Pin	Value	Function
	1	Input	0V	CNC attends to the 8050MC keyboard
	1	Input	24V	The CNC attends to the 8050M keyboard
	2			Not used at this time
	3	Input	0V	External power supply

Connector X4 may be controlled either from the electrical cabinet or by the operator by means of a switch.

If connector X4 is not under power, the CNC attends to the MC keyboard.

The maximum cable length permissible between the Central Unit and the Keyboard is 25m (82 pies).

The appendix of this manual includes a section with examples about selecting keyboards.

2. GENERAL CONCEPTS

2.1 KEYBOARD

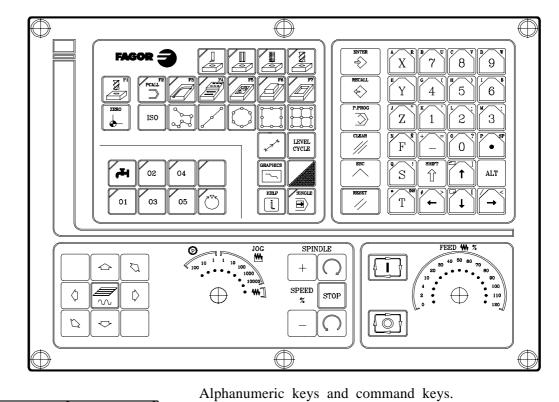


 Image: Shift to the second second

Selects character X Selects character A

Selects character R

Specific keys for the MC model

Enable Selection and definition of Machining Operations Governing external devices Selecting the spindle's operating mode Selecting single or automatic execution mode

The JOG key

Enables Moving the axes of the machine Governing the spindle Modifying the feedrate of the axes and the spindle

Starting and stopping execution

Chapter 2 - page 1

2.2 GENERAL

The 8055MC CNC is based on the 8055M CNC and has inside all the performance features of the 8055M CNC plus the specific features of the MC mode.

For example, the setting of the numerical Control must be done in 8055M mode.

In the MC operating mode the programs P900000 to P999999 are reserved for the CNC itself, that is, these cannot be used as part-programs by the user as they have a special significance.

Furthermore, to be able to work in MC mode, the CNC has to have in its memory programs P999997 and P999998, which are supplied by Fagor Automation.

Every time the CNC detects a new software version, updates these programs automatically and makes a backup copy of the old ones in the configuration card (CARD A).

Also routines 0000 a 8999 are free for use and routines 9000 to 9999 are reserved for the CNC itself.

Warning: Programs P999997 and P999998 are associated with the software version.

Fagor Automation shall not be held responsible of any possible malfunction if programs P999997 and P999998 contained in user RAM memory have been erased or do not correspond to the software version.

Some of the routines reserved for the CNC itself have the following meaning:

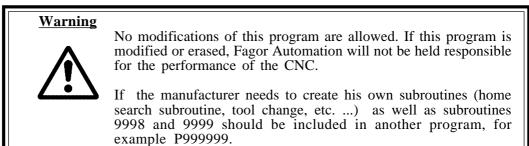
9998 Routine to be executed by the CNC at the beginning of each part-program.9999 Routine to be executed by the CNC at the end of each part-program.

Every time a new part-program is edited the CNC adds a call to the corresponding routine at the beginning and end of each program.

g Both subroutines must be defined by the machine manufacturer even if no operation is to be carried out at the beginning or at the end of the part-program.

Otherwise, the CNC will issue an error when attempting to run a part-program.

Example of how to define subroutine 9998.


- (SUB 9998) ; Definition of subroutine 9998.
- ; Programmed blocks defined by the machine manufacturer
- (RET) ; End of subroutine

General Concepts
 General

Some of the programs reserved for the CNC itself have the following meaning:

P999998 This is a routines program used by the CNC for interpreting the programs edited in MC format and executing these afterwards.

P999997 This is a text program which contains:

All the phrases and texts displayed on the different screens in the MC mode. The help texts for the icons in work cycles shown at the bottom left side of the screen. The messages (MSG) and errors (ERR) to be issued at the MC model.

All these texts, messages and errors may be translated into the desired language.

Points to consider:

All the lines of the program have to start with the character ";"

If a line starts with ";;,", the CNC will understand that the whole line is a program comment.

The format of a line is as follows:

";Nr. of text - explanatory remark (not displayed) - \$Text to be displayed"

Examples

;; General text	The CNC treats this as a remark
;;44 Feedrate \$M/MIN	The CNC treats this as a remark.
;44 \$M/MIN	This is message 44 and the text "M/MIN" is
displayed	C
	This is message 44, and has the explanatory
	remark "Feedrate" which is not displayed and the
	text
	"M/MIN" is shown.

Notes regarding messages:

The format must be respected. Only the text after "SAVEMSG:" may be translated

Example:

Original:	N9500(MSG"SAVEMSG:	DRILLING 1")
Translated:	N9500(MSG"SAVEMSG:	1. ZULAKETA ZIKLOA")

Notes regarding errors:

The format must be respected. Only the text between quotes("xxxx") may be translated

Example: Original:

Original: N9000(ERROR"DRILLING CYCLE 1: F=0") Translated: N9000(ERROR"1. ZULAKETA ZIKLOA: f=0")

When modifying program 999997, it is recommended to make a backup copy because the CNC replaces it every time another language is selected or the software version is updated.

P998000 ... **P998999** Are the profiles defined by the user by means of the profile editor and corresponding to the pocket cycle with profiles. In the MC mode, the user defines them with three digits (0 through 999) and the CNC stores them internally as P 998xxx.

P997000 ... **P997999** Are the profiles defined by the user by means of the profile editor and corresponding to the profile milling operation. In the P 997xxx.

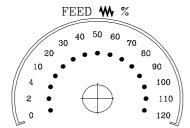
2.2.1 GENERAL LOGIC OUTPUTS OF THE CNC

The general logic output CUSTOM (M5512) shows the CNC the operation mode that is selected:

 $\begin{array}{ll} \text{CUSTOM} (\text{M5512}) = 0 & \text{Operating mode CNC 8055 M is selected.} \\ \text{CUSTOM} (\text{M5512}) = 1 & \text{Operating mode CNC 8055 MC is selected.} \end{array}$

When having two keyboards, MC keyboard and an 14" monitor with keyboard, this variable can be used in the PLC:

- to govern the keyboard switcher board.


- to know the source of the keys and inhibit the desired ones.

SELECTO a SELECT7 (M5524 a M5531)

The general logic outputs "SELECT" indicate the position selected at each multi-position switch of the keyboard.

Ø 100 ¹⁰		JOG
• `	•	1000 10000
	\bigcirc	• ₩]

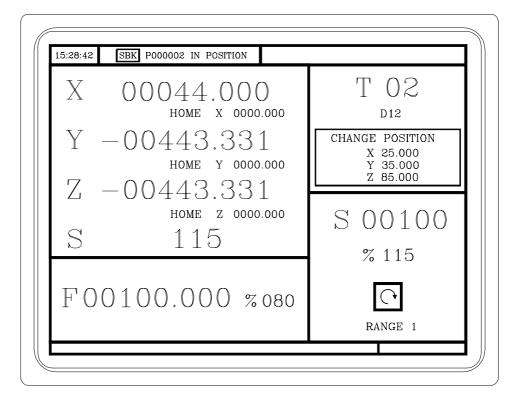
Position	SELECT3	SELECT2	SELECT1	SELECT0
Handwheel x 100	0	0	0	0
Handwheel x 10	0	0	0	1
Handwheel x 1	0	0	1	0
JOG 10000	0	0	1	1
JOG 1000	0	1	0	0
JOG 100	0	1	0	1
JOG 10	0	1	1	0
JOG 1	0	1	1	1
Continuous JOG	1	0	0	0

Position	SELECT7	SELECT6	SELECT5	SELECT4
Feed Override 0%	0	0	0	0
Feed Override 2%	0	0	0	1
Feed Override 4%	0	0	1	0
Feed Override 10%	0	0	1	1
Feed Override 20%	0	1	0	0
Feed Override 30%	0	1	0	1
Feed Override 40%	0	1	1	0
Feed Override 50%	0	1	1	1
Feed Override 60%	1	0	0	0
Feed Override 70%	1	0	0	1
Feed Override 80%	1	0	1	0
Feed Override 90%	1	0	1	1
Feed Override 100%	1	1	0	0
Feed Override 110%	1	1	0	1
Feed Override 120%	1	1	1	0

2.3 POWER-UP

Both on CNC power-up and after the keystroke sequence:

SHIFT


the CNC acts as follows:

Shows «page 0» if it has been defined by the manufacturer. To access this operating mode, press any key.

If there is no «page 0», the CNC will display the standard screen for the selected work mode.

There are two operating modes: MC mode and M mode. To switch from one mode to the other, press $\begin{bmatrix} SHIFT \\ 1 \end{bmatrix}$

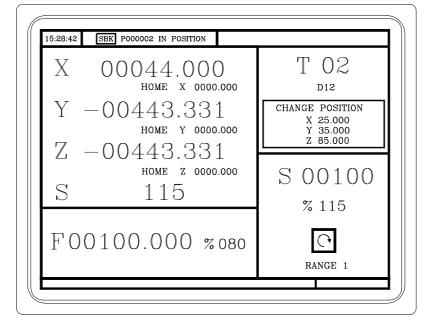
The standard MC mode screen is:

Warning CNC setting should be done in M mode. Some errors must be eliminated in the M mode.

2.4 OPERATING IN 8055M MODE WITH AN MC KEYBOARD

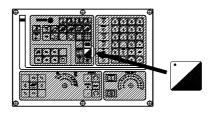
The MC keyboard has been designed to also be able to operate in M mode. The alphanumeric keyboard must be used for the keys replacing softkeys F1 to F7.

Alphanumeric keyboard:


The CRT can be blanked out by hitting the keystroke sequence: $\hat{\uparrow}$

To recover the video signal, just press any key.

On the other hand, when receiving any message (PLC, program, etc.) the CNC also recovers the display.



3. OPERATING IN JOG MODE

The standard MC operating mode screen is:

If one presses key

The CNC displays the special MC operating mode screen.

M0 (MSG " ") (IF P102 EQ 1 (IF P101 EQ C M3 (RET) N10 M4 (RET)		G01 G17 M41 PARTC : 000000 CYTIME : 00:00:00:00 TIMER : 000000:00:00
COMMAND	ACTUAL	TO GO FOLLOWING ERROR
Y 00000.000 Z 00000.000	Z 00000.000	
THEORETICAL S 0.0000	RPM	5 0.0000

3.1 INTRODUCTION

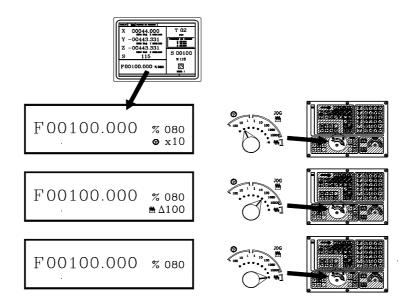
The standard MC operating mode screen contains the following information:

	$ \begin{array}{ccc} 1 & 2 \\ \downarrow & \downarrow \end{array} $	3	
④ →⑤ →	15:28:42 SBK P000002 IN POSITION MO (MSG " ") (IF P102 EQ 1 GOTO N10) (IF P101 EQ 0 RET) M3 (RET) N10 M4 (RET) COTO N10) (IF P101 EQ 0 RET) M3 (RET) X0000.000 X 00000.000 X 00000.000 X 00000.000 Y 00000.000 X 00000.000 X 00000.000 X 00000.000 X 00000.000 Z 00000.000 X 00000.000 X 00000.000	G01 G17 M41 PARTC : 000000 CYTIME : 00:00:00:00 TIMER : 000000:00:00 TO GO FOLLOWING ERROR X 00000.000 X 00000.000 Y 00000.000 Y 00000.000 Z 00000.000 Z 00000.000 S 0.0000	-6
	7	↑ (8)	

- 1.- Clock
- 2.- This window can display the following data:

SBK	when the Single Block execution mode is selected.
DNC	when the DNC mode is activated.
P	number of the program selected.
Message	«In Position» - «Execution» - «Interrupted» - «RESET»
PLC messa	ges

- 3.- The CNC messages are shown in this window.
- 4.- This window can display the following data:
 - * The X, Y, Z coordinates of the axes.
 - * In small characters, the axis coordinates referred to machine zero reference (home). This values are very useful when allowing the operator to set a tool change position (see zone 6). The CNC does not show this data when text 33 has not defined in program 999997.
 - * The coordinates of the auxiliary axes which are defined.
 - * The real spindle rpm "S".
- 5.- The information shown in this window depends on the position of the left-hand switch.


In all cases the feedrate of the ${}_{\rm W}F{}_{\rm W}$ axes that has been selected and the % of F which is being applied are shown.

www.EngineeringBooksPdf.com

All the possible cases are shown below.

Operating in JOG modeIntroduction

6.- This window displays, in large characters, the tool number «M» selected.

The offset number «D» associated with the tool. If the tool number and the offset number coincide, the CNC will not display value «D».

The coordinates for the tool change point referred to home. The CNC does not display this window when text 47 of program 999997 is not defined.

- 7.- This window shows all the details of the spindle :
 - * The actual spindle speed "S".
 - * The condition of the spindle. This is represented by an icon and can be turning to the right, to the left or idle.
 - * The % of the spindle speed being applied.
 - * The active spindle range.
 - * The range of the active spindle. The CNC does not display this information when text 28 of program 999997 is not defined.
- 8.- Whenever a work cycle is accessed, the CNC shows the help text associated with the icon selected in this window.

This help text must be defined in P999997 program and be written in the desired language.

www.EngineeringBooksPdf.com

The format and the points to be considered in the P999997 program are detailed in Chapter 2.

9.- Reserved.

3 1 15:28:42 SBK P000002 IN POSITION G01 G17 мо (MSG "") (IF P102 EQ 1 GOTO N10) (IF P101 EQ 0 RET) M3 M41 6 4 M3 (RET) ``10 M4 PARTC : CYTIME : TIMER : 000000 00:00:00:00 000000:00:00 (RET) COMMAND ACTUAL GO Х 00000.000 X 00000.000 X 00000.000 X 00000.000 00000.000 Y 00000.000 Y 00000.000 Y 00000.000 Y Z 00000.000 Z 00000.000 Z 00000.000 Z 00000.000 5 THEORETICAL RPM S 0.0000 S 0.0000 S 0.0000

The special screen for MC operating mode contains the following information:

- 1.- Clock
- 2.- This window can display the following data:

SBK	when the Single Block mode of execution is selected.
DNC	when the DNC mode is active.
P	number of the program selected.
Message	«In Position» - «Execution» - «Interrupted» - «RESET»
PLC messa	ages

- 3.- The CNC messages are shown in this window.
- 4.- In manual operating mode this window does not display any data, but during execution, it shows the lines of the program being executed.
- 5.- The X, Each axis has the following fields available:

COMMAND	States the coordinate programmed, that is, the position that the axis must reach.
ACTUAL TO GO	States the actual coordinate or actual position of the axis. States the distance that the axis has still to go to reach the coordinate programmed.
FOLLOWING ERROR	Difference between the theoretical and real values of the position.
The spindle (S) has the	following fields available:
THEORETICAL RPM	theoretical speed S programmed. speed in rpm.
FOLLOWING ERROR	When operating with spindle guided stop (M19) this indicates the
	difference between theoretical and real speeds.
The auxiliary axes only	show the actual (real) axis position.

- 6.- This window shows the state of the «G» functions and the auxiliary functions «M» that are activated. It also displays the value of variables.
 - PARMC States the number of consecutive parts that have been executed with the same program.

Whenever a new program is selected, this variable assumes value 0.

CYTIME States the time elapsed during the execution of the parts. It is expressed in the following format: "hours : minutes : seconds : hundredths of second".

Whenever the execution of a program is started, even though this is repetitive, this variable assumes value 0.

- TIMER States the reading of the clock enabled by the PLC. It is expressed in format "hours : minutes : seconds".
- 7.- Reserved.
- 8.- Reserved.

Warning	Whenever a part-program or an operation selected for simulation or execution, the Cl top center window and highlights it next t	NC selects this part-program in the
	$\begin{array}{c c} X & 00044.000 \\ HOME & X & 0000.000 \\ Y & -00443.331 \\ HOME & Y & 0000.000 \\ Z & -00443.331 \\ HOME & Z & 0000.000 \\ S & 115 \\ F & 00100.000 & % 080 \\ \hline \\ F & 00100.000 & % 080 \\ \hline \\ RANGE & I \\ \hline \\ RANGE & I \\ \hline \\$	

3.2 AXIS CONTROL

3.2.1 WORK UNITS

Whenever the MC work mode is accessed, the CNC assumes the work units, «mm or inches», «millimeters/minute or millimeters/revolution», etc., that are selected by machine parameter.

To modify these values the M work mode has to be accessed, modifying the relevant machine parameter.

3.2.2 COORDINATE PRESET

Coordinate preset must be made axis to axis, in the following stages:

1st Press the key for the axis required $\begin{bmatrix} x \\ X \end{bmatrix}$, $\begin{bmatrix} x \\ Y \end{bmatrix}$ or $\begin{bmatrix} z \\ Z \end{bmatrix}$

The CNC will frame the position for said axis, to indicate that this is selected.

2nd Enter the value required for preset of the axis.

To exit coordinate preset press

3rd Press so that the CNC assumes said value as the new value for the point. The CNC requests confirmation of the command. Press to confirm or \checkmark to exit preset.

3.2.3 HANDLING THE FEEDRATE OF THE AXES (F)

To fix any particular value for the axis feedrate the following steps have to be carried out:

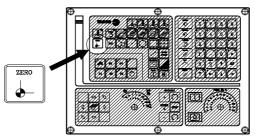
1st Press F

The CNC will frame the present value, to indicate that this is selected.

2nd Enter the new feedrate required.

To exit coordinate preset press |

3rd Press I for the CNC to assume said value as the new feedrate for the axes.


3.3 SEARCH FOR MACHINE REFERENCE ZERO (HOME)

The search for machine reference zero can be done in 2 ways:

- search for machine reference zero for all the axes.
- search for machine reference zero for only one axis.

Search for machine reference for all the axes

To carry out a search for machine reference zero for all axes the user should press key:

The CNC will request confirmation of the command (text 48 of program 999997)

Press U ,The CNC will execute the machine reference zero routine defined by the manufacture in the general machine parameter P34 (REFPSUB).

After carrying out the search for machine reference zero (home) position in this mode, the CNC saves the part zero or zero offset that is active at the time.

A home search routine, general machine parameter P34 other than 0 has to be defined. Otherwise the CNC will display the relevant error.

Search for machine reference zero for only one axis

To carry out the search for machine reference zero for only one axis the key for the required axis should be pressed as well as the key for machine reference zero search.

In either case, the CNC will request confirmation of the command (text 48 of program 999997)

A R	
E Y	
E T	

- Carries out the home search on the X axis

Warning:

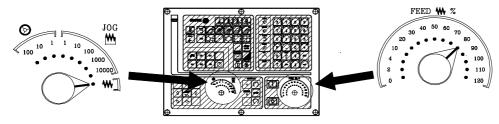
Carries out the home search on the Y axis

Carries out the home search on the Z axis

After carrying out the search for machine home position in this mode the CNC does not save the part zero or zero offset that is active at the time and assumes as new part zero the position taken by machine reference zero (home).

or [Z] [target position]

3.4 MANUALLY MOVING THE MACHINE


The axes of the machine can be moved in the following ways

- continuous movement [Z] [target position]
- incremental movement
- movement by electronic handwheel

CONTINUOUS MOVEMENT 3.4.1

Place the left-hand switch in position **W** and on the right-hand switch select the percentage (0% to 120%) of the feedrate selected to be applied.

Ì.

Continuous movement should be done axis to axis. To do this press the JOG key for the direction of the axis to be moved.

		\Box
$(\ \)$		$\left[\begin{array}{c} c \\ c \\ \end{array} \right]$
	\bigcirc	

The axis moves with a feedrate equal to the percentage (0% to 120%) of the «F» feedrate selected.

If during movement the key will is pressed the maximum feedrate possible is carried out, as is stated in the "G00FEED" axis machine parameter. This feedrate will be applied as long as said key is pressed, and when released the previous feedrate will be resumed.

Depending on the state of the "LAMCHM" general logic input the movement will be made in the following way:

* If the PLC sets this mark at a low logic level (0V), the axis will only move while the relevant JOG key is pressed.

* If the PLC sets this mark at a high logic level (24V), the axis will start to move when the JOG kev is pressed and will not stop until said JOG key or another JOG key is pressed the movement is transferred to what is indicated by the next again, and in this case key pressed.

When operating with feedrate "F" in millimeters/revolution the following cases may arise:

a) The spindle is started. \bigcirc or \bigcirc

The CNC moves the axes to the F programmed.

b) The spindle is stopped but there is a spindle speed S selected.

The CNC calculates the corresponding feedrate in millimeters/minute and moves the axis. For example, if «F 2.000» and «S 500»:

 $F (mm/min) = F (rev/min.) \times S = 2 \times 500 = 1000 mm/min$ The axis moves at a feedrate of 1000 in millimeters/minute.

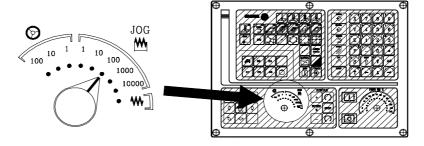
0000 % 115

0500

% 115

c) The spindle is stationary and there is no spindle speed S selected.

If feedrate F has value 0, the CNC moves the axes at rapid feedrate.


If feedrate F has any other value, the axes will only be able to be moved if key ∞ is pressed and the key for one axis. The CNC moves the axis at fast feedrate.

3. Operating in JOG mode
3.4 Manually moving the machine
3.4.2 Incremental movement

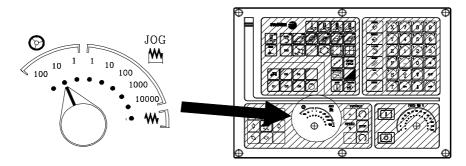
3.4.2 INCREMENTAL MOVEMENT

Place the left-hand switch in one of the positions \mathbf{M}

JOG

Incremental movement must be done axis to axis. To do this press the JOG key for the direction of the axis to be moved.

Each time a key is pressed, the corresponding axis moves the amount set by the switch. This movement effects the ${}_{\rm e}F{}_{\rm s}$ feedrate selected.


Position of the switch		Mo	vement per turn
1	0.001 mm	or	0.0001 inches
10	0.010 mm	or	0.0010 inches
100	0.100 mm	or	0.0100 inches
1000	1.000 mm	or	0.1000 inches
10000	10.000 mm	or	1.0000 inches

3.4.3 MOVEMENT BY MEANS OF ELECTRONIC HANDWHEEL

This option means the machine movements can be governed by means of an electric handwheel.

To do this the left-hand switch has to be located in one of the positions of the handwheel

The positions available are 1, 10 and 100, all of these indicating the multiplication factor applied to the pulses provided by the electronic handwheel.

Example:

Position of the switch	Move	ement	per turn
1	0.100 mm	or	0.0100 inches
10	1.000 mm	or	0.1000 inches
100	10.000 mm	or	1.0000 inches

The machine has an electronic handwheel

After selecting the position required on the switch, press one of the JOG keys for the axis which is to be moved. The axis selected will be displayed in small characters next to the handwheel symbol at the bottom of the screen.

If a FAGOR electronic handwheel with push button is available, the selection of the axis to be moved can also be done in the following way:

Press the push button located on the rear of the handwheel. The CNC will select the first of the axis and display this in highlighted text.

If the push button is pressed again the CNC will select the following axis, making this selection on a rotative basis.

If the push button is held down for longer than 2 seconds, the CNC will stop selecting said axis.

After selecting the axis the machine will move this as the handwheel is turned, also respecting the turning direction applied to the same.

The machine has two or three electronic handwheels

The machine will move each of the axis according to how the corresponding handwheel is turned, taking into account the position selected on the switch and also respecting the turning direction applied.

www.EngineeringBooksPdf.com

Warning:

It may occur that depending on the turning speed of the handwheel and the position of the switch, the CNC may be requested to make a movement with a feedrate higher than the maximum allowed ("G00FEED" axis machine parameter). The CNC will move the axis the amount required, but limit the feedrate to said value.

3.4.4 FEED HANDWHEEL

Usually, when making a part for the first time, the machine feedrate is controlled by means of the feedrate override switch.

From this version on, it is possible to use the machine handwheels to control that feedrate. This way, the machining feedrate will depend on how fast the handwheel is turned.

To do this, proceed as follows:

Inhibit all the feedrate override switch positions from the PLC. Detect how far the handwheel is turned (reading of pulses received) Set the corresponding feedrate from the PLC depending on the pulses received from the handwheel.

The following CNC variables return the number of pulses the handwheel has turned. HANPF shows the number of pulses of the 1st handwheel. HANPS shows the number of pulses of the 2nd handwheel. HANPT shows the number of pulses of the 3rd handwheel. HANPFO shows the number of pulses of the 4th handwheel.

To use this feature, the handwheel must be associated with one of the axes of the machine. General machine parameters "AXIS1....8" or "HANDWHE1....4" set with values: "21....29"

Example: The machine has a button to activate and deactivate this feature (feed handwheel) and the feedrate control is carried out with the second handwheel.

CY1 R101=0 reading END	Resets the register containing the previous handwheel
PRG	
DFU I71 = CPL M1000	Every time the button is pressed, mark M1000 is inverted
M1000 = MSG1	If the feature is active, a message is displayed.
NOT M1000	If the feature is not active
	enables all the positions of the feedrate override switch
= JMP L101	and goes on with program execution
If the feature is active	
DFU M2009	and a leading edge (up flank) occurs at the clock mark
M2009 = CNCPD(HANDS P100 M1)	We read the number of handwheel pulses contained in
= CNCRD(HANPS,R100,M1) R100	We read the number of handwheel pulses contained in
= SBS R101 R100 R102	calculates the number of pulses received from the last
reading	calculates the number of pulses received from the last
= MOV R100 R101	updates R101 for the next reading
= MLS R102 3 R103	calculates in R103 the proper % of feedrate override
= OR KEYDIS4 \$7FFFFF KEYDIS4	inhibits all the other positions of the feedrate override
switch	*
CPS R103 LT $0 =$ SBS 0 R103 R103	ignores the handwheel turning direction
CPS R103 GT $120 = MOV 120 R103$	Limits the maximum feedrate override to 120%.
DFU M2009	With the leading edge (up flank) of the clock mark
M2009	
= CNCWR(R103,PLCFRO,M1)	set the calculated feedrate override (PLCFRO=R103)
L101	
END	
END	

3.4.5 MASTER HANDWHEEL

With this feature, it is possible to jog two axes at the same time along a linear or circular path with a single handwheel.

More handwheels need not be installed on the machine. The one currently installed will be used for the usual work mode and for this feature (Master Handwheel).

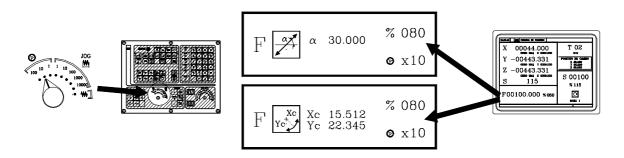
If besides having a general handwheel (general machine parameter $AXIS^{*}=11$ or 12) other handwheels are associated with the axes, the CNC assumes the one associated with the X axis (general machine parameter $AXIS^{*}=21$) as the Master Handwheel.

This feature must be handled by the PLC.

The PLC activates or deactivates the "master handwheel" mode through logic CNC input "MASTRHND" M5054, M5054 = 0. Standard handwheel mode ON M5054 = 1 Master handwheel mode

M5054 = 0 Standard handwheel mode ON. M5054 = 1 Master handwheel mode ON.

The PLC must indicate the type of jogging path to follow through logic CNC input "HNLINARC" M5053,


M5053 = 0 Linear jog

M5053 = 1 Circular jog.

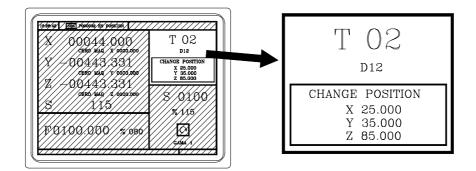
The following example uses the [O2] key to activate and deactivate the "master handwheel" mode and the [O3] to indicate the type of jog.

DFU B29 R561 = CPL M5054 DFU B31 R561 = CPL M5053 Activate / deactivate the "master handwheel" mode. Selects the type of jog, linear or circular.

While in handwheel mode and selecting the "master handwheel", the CNC shows the following data:

When choosing a linear jog (upper drawing), the angle of the path must be indicated and when choosing a circular jog (lower drawing), the arc center coordinates must be indicated.

To define these variables, press the [F] and, then, one of these keys:



Operating in JOG mode
 Tool control

3.5 TOOL CONTROL

The standard screen for MC operating mode displays the following information about the tool.

This window displays the following information:

- > In large characters, the number "T" of the selected tool.
- > The offset number «D» associated with the tool.
- > The coordinates for the tool change point. The CNC does not display this window when text 47 of program 999997 is not defined.

To select any other tool take the following steps:

1st Press T

The CNC will frame the tool number

2nd Enter the tool number to be selected To exit the selection process press

3rd Press [[]] key for the CNC to select the new tool.

The CNC will handle the tool change

3.5.1 TOOL CHANGE

Depending on the type of tool changer, one can have:

Machine with automatic tool changer Machine with manual tool changer

In both cases the CNC:

Executes the routine associated with the tool change (general machine P60 «TOOLSUB»).

Sends the PLC all the information required for this to handle the tool change.

And assumes the new values for the tool (offsets, geometry, etc. ...).

An example of how a manual tool changer is handled.

Subroutine 55 as associated with the tools. General machine parameter P60 «TOOLSUB» = 55.

Define the general machine parameter P71 "TAFTERS" = YES so that the tool is selected after executing the subroutine.

The subroutine associated with the tools can contain the following information:

(P102 = MS4)	,
	 ; Message for requesting tool change ; Program stop and wait until START is pressed ; Erases previous message) ; Recovers turning direction of spindle

After completing the subroutine, the CNC executes function T??, sends the PLC all the information required for the latter to handle the tool change and assumes the new values for the tool, (tool offsets, geometry, etc.)

When having a Machining Center, general machine parameter "TOFFM06 (P28) = Yes", the CNC acts as follows:

If the execution of an operation or cycle involves a tool change, the CNC: Selects the desired tool in the magazine Executes the subroutine associated with the tool, general machine parameter "TOOLSUB (P60)" Executes function M06 to carry out the tool change.

When selecting a new tool in JOG mode or when operating in M mode, the CNC only selects the too in the magazine and executes the associated subroutine. The M06 function must be executed by the operator, either by programming an ISO block or by setting the PLC so it executes the M06 function when pressing a particular key. The following example uses the [O4] key: DFU B2 R562 = CNCEX1 (M06, M1)

Note: On Machining Centers, the subroutine associated with the tool MUST NOT include the M06.

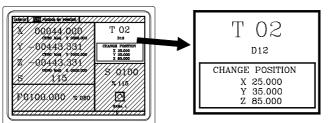
3.5.1.1 VARIABLE TOOL CHANGE POINT

If the manufacturer wishes the user can be allowed to define the tool change point at all times. This feature logically depends on the type of machine and type of changer.

This feature allows the tool change to be made beside the part, thus avoiding movements to a change point farther away from the same.

To allow this:

Define text 47 of the program 999997 for the CNC to request the coordinates on X, Y and Z of the change point. For example: ;47 \$CHANGE POSITION


These coordinates should always refer to machine reference zero (home), for the zero offsets not to affect the tool change point.

For this reason, the CNC can display, along with coordinates X, Y, Z and in small characters, the coordinates for the axes referring to home.

For the CNC to show the coordinates of the axes referring to home text 33 of program 999997 has to be defined. For example: ;33 \$REFERENCE ZERO (HOME)

Since the tool change point can be modified by the operator at any time, the subroutine associated with the tools must take these values into account.

Arithmetical parameters P290, P291 and P292 contain the values set by the operator as change position on X, Y, Z.

Arithmetic parameter P290 Change position on X Arithmetic parameter P291 Change position on Y Arithmetic parameter P292 Change position on Z

In subroutine 55 of the previous section, the line fixing the movement to the change point must be modified:

Where it says: G0 G53 XP??? YP??? ZP??? ; Movement t It should say: G0 G53 XP290 YP291 ZP292 ; Movement t the user.

; Movement to the change point.

; Movement to the change point defined by

Define the coordinates of the change point (X, Y, Z)

Press key $\begin{bmatrix} T \\ T \end{bmatrix}$ for selecting field «T». Then press key for the relevant axis $\begin{bmatrix} T \\ T \end{bmatrix}$

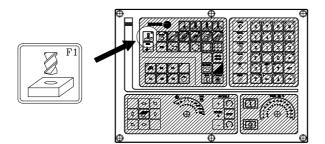
After moving over the coordinates for the axis to be defined, one can:

- b) Assign the present position of the machine. Move the axis, by means of the handwheel or the JOG keys, up to the point required.

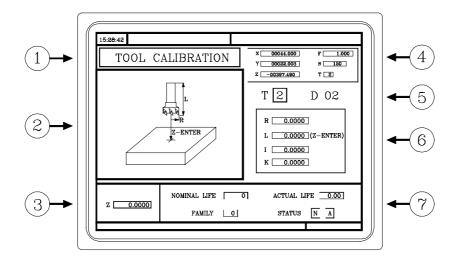
Press key 🔂 The CNC assigns said coordinate to the field selected.

www.EngineeringBooksPdf.com

Press key



key


Ζ

3.5.2 TOOL CALIBRATION

To access tool calibration mode press key

The CNC displays the following information:

- 1.- Header for the selected operating mode: «Tool calibration».
- 2.- Help graphics for the tool calibration.
- 3.- Window for tool calibration.
- 4.- Current machine status Actual (real) X, Y, Z coordinates, actual axis feedrate "F", actual spindle speed "S" and "T" tool currently selected.
- 5.- Tool number and its Offset number.
- 6.- Length and offset values set in the tool offset table.
- 7.- Nominal life, real life, family and status of the table set in the tool table.

www.EngineeringBooksPdf.com

To calibrate the tool take the following steps:

- 1.- Define the tool in the tool table.
- 2.- Carry out tool calibration

keys.

3.5.2.1 DEFINE THE TOOL IN THE TOOL TABLE

To define a tool in the tool table take the following steps:

Select the tool number to be defined

Press key T to select field «T»

Key in the tool number to be defined and press key

If the tool is defined, the CNC will display the values stored in the table.

If the tool is not defined, the CNC will assign it a offset with the same number and all the data that define the geometry and lengths of the tool will be reset to value 0.

Select the offset number to be associated with this tool

The "D" field must be selected. If not, use the \uparrow \downarrow \leftarrow

Key in the offset number to be associated with the tool and press

Define the tool dimensions

	The tool data is:		Radius Length	Ι	Radius wear K Length wear
--	-------------------	--	------------------	---	------------------------------

Even if the tool length is known (L), it is recommended to measure it as indicated in the next section. Once it has been measured, the CNC updates the L and K fields.

The CNC assumes (R+I) as the real tool radius and (L+K) as the real tool length.

To set these values, select the corresponding field using the \uparrow \downarrow \leftarrow \rightarrow , key in the desired

value and press

Define the rest of the data associated with the tool

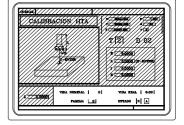
Nominal life. Machining time (in minutes) or number of operations that the tool may carry out.

Actual life. Machining time already elapsed or number of operations already carried out.

Family code. Used with automatic tool changer. 0 ... 199. normal tools, 200 ... 255 special tools.

When requesting a worn-out (expired) tool ("actual life" greater than "nominal life"), the CNC will select the next tool in the table belonging to the same family instead of the one requested.

Tool status. They are 2 fields for internal CNC data. They cannot be modified.


N = Normal (family 0-199)S = Special (family 200-255) A = AvailableE = Expired ("actual life" greater than "nominal life")R = Rejected by the PLC

To define these values, select the corresponding field using the \uparrow \downarrow \leftarrow \rightarrow key in the

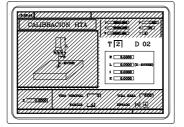
desired value and press

www.EngineeringBooksPdf.com

T 2 D 02

3.5.2.2 TOOL MEASUREMENT

There are 2 ways of measuring a tool.


a) Using a tool calibrating table.

Using the window containing the tool dimensions to set that data.

b) Not using a tool calibrating table. The measurements are carried out with the CNC. Use the Tool Calibration window.

a) Set the tool length or modify the tool length offsets

This window show the dimensions assigned to the selected tool.

"R" and "L" indicate the tool Radius and Length.

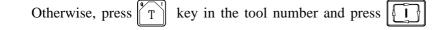
"I" and "K" indicate the offset the CNC has to apply to compensate for tool wear.

The CNC adds the "I" value to the radius "R" and the "K" value to the length "L" for calculating the real dimensions (R+I) and (L+K) to be used.

Every time the R or L value is defined, the CNC sets the I and K fields, respectively, to zero.

The "I" and "K" values are accumulative. That is, if the "I" value is 0.20 and a value of 0.05 is entered, the CNC assigns a value of 0.25 to the "I" field.

When defining I=0 or K=0, each one of them is reset to "0".


To change one of these values, select the corresponding field , key in the desired value and press $\left[\begin{array}{c} E \\ \hline \end{array} \right]$

b) Tool measurement

The window on the right contains the tool dimensions and the one on the lower left-hand side the data necessary to measure it.

//CALIB	RACION/HTA	
		12 0 02
		R 0.0000
		L 0.0000 (Z-ENTER)
		К 0.0000
z 0.0000	XUDA NOMINAL	

To access the tool calibration window (bottom left) and thus carry out tool calibration, the tool must be selected on the machine.

Select the bottom left window using the \uparrow \downarrow \leftarrow

Key in the Z coordinate of the part used for calibration and press $\left| \right\rangle$

Tool measurement. Length only.

Approach the tool to the part and touch it with it.

Press Z ENTER

The tool is now calibrated. The CNC assigns the length "L" corresponding to it and resets its "K" field to "0".

The tool radius "R" has to be entered manually.

To calibrate another tool:

Select at the machine: T number

Approach the tool to the part and touch it with it.

Then, Ζ

3.5.2.3 MODIFY VALUES WHILE IN EXECUTION

The tool values (dimensions and geometry) may be modified without having to interrupt program execution.

To do this, press , the CNC will show the Tool Calibration screen with all the data corresponding to the active tool being possible to change its data or that of any other tool.

To exit this screen, press

3.6 SPINDLE CONTROL

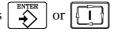
The standard MC work mode shows the following information about the spindle.

- Т 02 00044.000 HOME X 0000.000 D12 HANGE POSITION X 25.000 Y 35.000 Z 85.000 00443.331 HOME Y 0000.000 -00443.331HOME S 00100 % 115 F00100.000 %ово (Ĥ RANGE 1
- 1.- Actual (real) spindle speed in rpm.
- 2.- Theoretical spindle speed in rpm.

To select another speed, press s the CNC highlights the current value

Key in the new value and press The CNC assumes that value and updates the real spindle speed.

3.- % of the theoretical spindle speed being applied.


To change this percentage, press

- 4.- Spindle status: turning clockwise, turning counterclockwise or stopped.
 To change the spindle status, press:
- 5.- Currently selected spindle speed range.

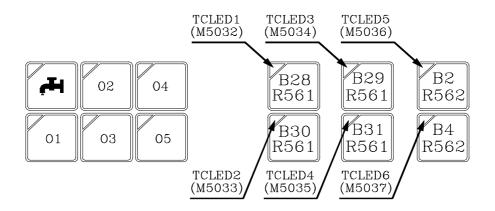
When using an automatic tool changer, this value cannot be modified.

When NOT using an automatic tool changer, press s and then use the t key until the current value is highlighted.

Enter the range number to be selected and press

+ SPEED

Note: When the machine does not have spindle ranges, this message is useless. That is why the CNC does not show this message when text number 28 has not be defined in program 999997.


3.7 CONTROL OF EXTERNAL DEVICES

The CNC allows up to 6 external devices to be activated and deactivated from the keyboard. One of these is the cooling fluid.

The activation and deactivation of the devices must be carried out by the machine manufacturer by means of the PLC program.

The CNC will inform the PLC of the status of each one of the keys. The relevant Register bit will have value 1 when the key is pressed and value 0 when this is not pressed.

The Register bit for each one of the keys is as follows:

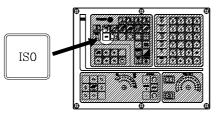
The status of the light for each one of these keys must be controlled by the machine manufacturer by means of the PLC program, with the MCLED* input variables shown in the figure being available for this purpose.

Examples:

Control of the coolant:

DFU B28R561 = CPL MCLED1 = CPL O33

Control of the tail-stock (O1). To activate or deactivate the tail-stock a number of conditions must be satisfied such as spindle stopped,


DFU B30R561 AND (Remaining conditions) = CPL MCLED2 = CPL O34

IS0


3.8 ISO CODE MANAGEMENT

The ISO key gives access to the MDI mode or to the ISO work mode.

To access the MDI mode, the JOG mode must be selected and then press

The CNC displays a window at the bottom of the standard (or special) screen.

In this window, an ISO-coded block may be edited and then executed just like in MDI mode of the "M model" work mode

To access the ISO mode, press once while working with operations or cycles or twice when in the JOG mode.

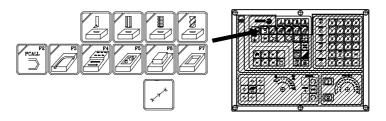
When accessing the ISO mode, a special screen comes up where up to 6 program blocks may be edited in ISO code or in high level language.

Example:	[ISO]
	G95 G96 S120 M3
	G0 Z100 $\overbrace{\bullet}^{\text{ENTER}}$
	G1 X30 F0.1

Once the desired block or blocks have been edited, press \checkmark , The upper right-hand side of the screen will display the \checkmark symbol.

From this moment on, the edited blocks may be simulated, executed or stored like any other operation or cycle.

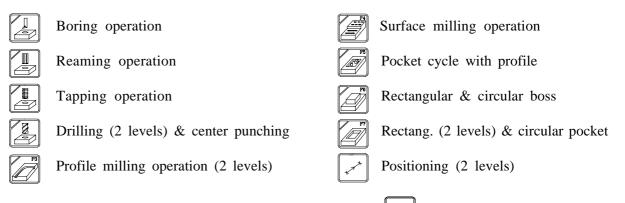
Press	to	simulate	and		to	execute.
-------	----	----------	-----	--	----	----------


It is possible to combine blocks edited in ISO code with machining cycles (standard and/or user defined) to make up part-programs. The chapter on "Program storage" of this manual describes how to do it and how to operate with them.

To store blocks edited in ISO code, press

4. WORKING WITH OPERATIONS OR CYCLES

The following keys of the CNC must be used to select the machining operations or cycles:


When pressing the CNC shows all the user cycles defined by the machine manufacturer using the WGDRAW application.

The user cycle is edited like any other standard cycle of the MC mode.

Once all the necessary data has been defined, the operator may Simulate or Execute the cycle just like any other standard cycle of the MC mode.

When pressing any other key, the CNC selects the corresponding machining operation or cycle changing the display and lighting up the indicator lamp of the key just pressed.

The operations or cycles that can be selected with each one of these keys are the following:

When the machining operation or cycle has several levels, the LEVEL Key must be pressed to select the desired cycle level:

The Boring, Reaming, Tapping, Drilling and Center punching operations may be carried out at the position occupied by the tool or they could be associated with a positioning by means of

With this CNC, it is possible to combine ISO-coded blocks with standard and/or user-defined machining operations to create part-programs as described in the chapter on "Part-program storage" in this manual.

To deselect the cycle and return to the standard display, press the key corresponding to the selected

cycle (the one with the indicator lamp on) or $\left| \right\rangle$

Note: the operations or cycles can modify global parameters 150 through 299 (both included).

4.1 OPERATION EDITING MODE

1.000 X 00044.000 F TAPPING 4 Y 00022.003 s <u>150</u> Z -00397.490 T 3 X 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 \bigcirc <u></u>∄† Penetration 0 (3)s 150 🔿 (6)F 0.000 тз DЗ

Once the operation has been selected, the CNC shows a screen like this:

- 1.- Name of the selected operation or cycle.
- 2.- Help graphics.
- 3.- When referred to positioning, it indicates the associated operation
- 4.- Current machine status. Coordinates and machining conditions.
- 5.- Data defining the geometry of the machining operation.
- 6.- Machining conditions for the operation.

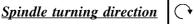
The CNC will highlights an icon, a coordinate or one of the operation (or cycle) defining data. To select another icon, data or coordinate, one can:

- a) Use the \leftarrow \rightarrow \uparrow \uparrow keys, the CNC selects the previous one or the next one.
- b) Press X Fy or Y or K The CNC selects the first coordinate for that axis. By pressing that key again, it will select the next coordinate for that axis.
- c) Press [F] or [T] The CNC selects the corresponding roughing data . By pressing that key again, the corresponding finishing data is selected.
- d) Press S The CNC selects the "S" roughing data. By pressing that key again, the finishing "S" data is selected.

4.1.1 DEFINITION OF THE MACHINING CONDITIONS

Some operations keep the same machining condition during the whole execution process (boring, reaming, etc.)

Other operations use certain machining conditions for roughing and other conditions for finishing (pockets, bosses, etc.)


This section describes how to define all this data.

Axis feedrate (F)

Place the cursor over this data, key in the desired value and press

Spindle speed (S)

Place the cursor over this data, key in the desired value and press

Place the cursor over this data and press

Machining tool (T)

Place the cursor over this data, key in the desired value and press

It is also possible to access the Tool calibration mode to check or change the data corresponding

to the selected tool. To do this, place the cursor over the "T" field and press

To quit the tool calibration mode and return to the cycle, press

<u>Roughing pass (D)</u>

Place the cursor over this data, key in the desired value and press

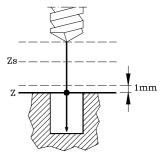
Finishing stocks (**b**, **b**z)

Place the cursor over this data, key in the desired value and press

4.1.2 SAFETY PLANE

In all operations, there are four work planes.

Starting plane or tool position when calling the cycle. It does not have to be defined.

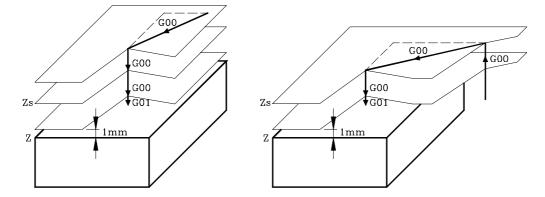

Safety plane. It is used for the first approach and for withdrawing the tool after the machining operation. It is defined with parameter **Zs**.

Approach (to the part) **plane**. It does not have to be defined. The CNC calculates ti, at 1 mm off the part surface.

Part surface. It is defined with parameter Z.

The tool moves in rapid (G00) to the safety plane (Zs), it keeps on going in rapid to the approach plane (up to 1mm off the part surface) and, finally, it moves at machining feedrate (G01) down to the part surface.

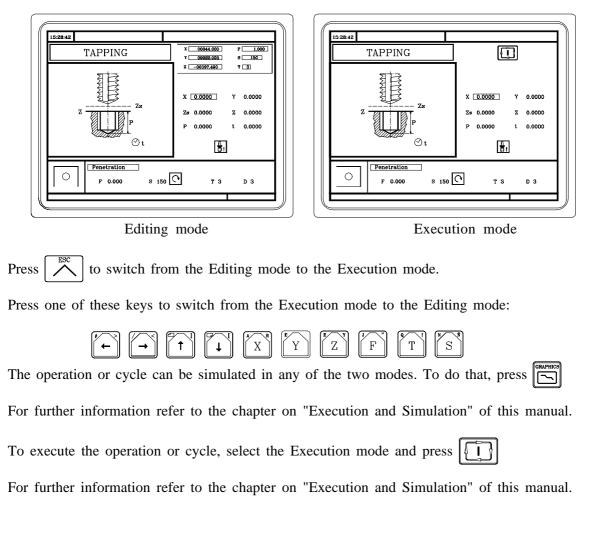
www.EngineeringBooksPdf.com



Chapter 4 - page 3

288	

The approach to the part surface depends on the tool position.



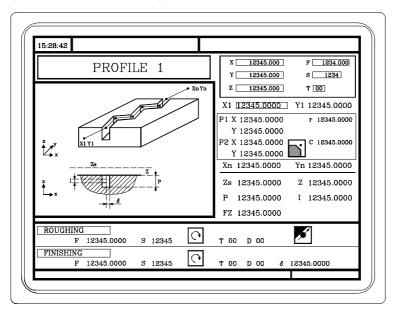
If it is above the safety plane (left drawing), it first moves on X and Y and then on Z.

If it is below the safety plane (right drawing), it first moves on Z up to the safety plane, then on X and Y and finally on Z down to the part surface.

4.2 SIMULATION AND EXECUTION OF THE OPERATION

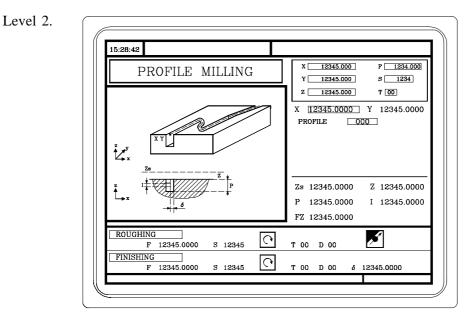
There are 2 ways to work with operations or cycles: Editing and Execution modes.

4.3 Profile milling operation


4.

4.3 PROFILE MILLING OPERATION

Press is to select the profile milling operation


This cycle may be defined in two ways:

Level 1.

One must define: The starting point (X1, Y1), the intermediate points (P1 through P12), the end point (Xn, Yn) and the machining conditions in Z (Zs, Z, P, I, Fz)

On the other hand, in the data area for the roughing operation, one must define whether the milling operation is to be carried out with or without tool radius compensation.

One must define The starting point (X, Y), the "Profile Program" number and the machining conditions in Z (Zs, Z, P, I, Fz)

On the other hand, in the data area for the roughing operation, one must define whether the milling operation is to be carried out with or without tool radius compensation.

4.3.1 DEFINING DATA

Coordinates of the starting and end points

These coordinates are defined one at a time. Once the cursor is over the coordinates of the axis to be defined, one can:

- a) Enter the value by hand. Key in the desired value and press 4
- b) Assign the current position of the machine.

Jog the axis, with the handwheel or the JOG keys up to the desired point. The upper righthand window shows the tool position at all times.

Press \bigwedge for the selected data to assume the value appearing in the upper right-hand window.


Press

Intermediate points (Level 1)

The intermediate points are defined one at a time. At each point, one must define:

The X, Y coordinates are defined one at a time like those for the starting end points.

The type of corner

To select the type of corner, place the cursor over the icon and press

When not using all 12 definition points, the first unused point must be defined with the same coordinates as those of the last point of the profile.

Machining conditions in Z (Zs, Z, P, I, Fz)

The machining conditions are defined one by one.

The Zs and Z values are defined like the coordinates of the starting and end points.

To define the rest of the values (P, I, Fz), place the cursor in the corresponding window, key in the desired value and press $\begin{bmatrix} EVTER \\ \bullet \end{bmatrix}$

Milling with or without tool radius compensation

Without tool radius compensation

With left-hand tool radius compensation

With right-hand tool radius compensation

To select the type of tool compensation, place the cursor over the icon and press

4.3 Profile milling operation

4.3.2 PROFILE DEFINITION (LEVEL 2)

To define the "Profile program" one can:

Key in the "Profile Program" number directly.

If the "Profile program" number is known, key it in and press

→>

Access the "Profile Program" directory to select one of them

Press **T** The cycle will show a window with the profile programs already defined.

To move around within a window, use

Place the cursor over the desired program and press

To exit this window without selecting any program, use $\left[\begin{array}{c} \leftarrow \end{array} \right]$

Edit a new "Profile program"

To edit a new "Program", key the program number (between 0 and 999) and press

The CNC will display the window for the profile editor (see Operating manual of the 8055 M CNC, chapter 4 section "Profile Editor").

Once the profile has been edited, the CNC requests a comment to be associated with the "Profile Program" just edited.

Enter the desired comment and press

If no comment is desired, press

Modify an existing "Profile program".

To modify a "Program", key in its number and press

The CNC will display the profile currently defined in the window for the profile editor.

One can: Add new elements at the end of the current profile. Modify the data of any element. Modify or insert chamfers, roundings, etc. Delete elements from the element.

An intermediate element of the profile CANNOT be deleted directly. To do it, all the elements must be deleted one by one starting with the one defined last until reaching to the desired one.

Delete an existing "Profile Program".

Press

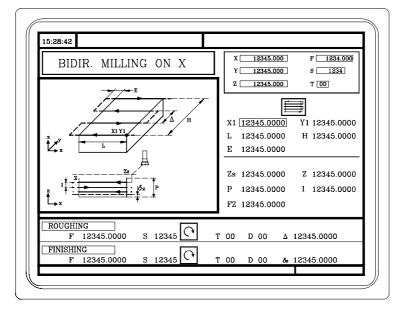
the cycle will show the profile programs already defined.

Place the cursor over the "Profile Program" to be deleted and press

The CNC will request confirmation.

Notes: The profile programs can also be accessed in the "M" mode because the CNC saves them internally as P 997xxx.

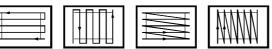
Example: Profile program 123 is internally stored as P997123.


www.EngineeringBooksPdf.com

When saving a part-program containing a level-2 profile cycle out to an external device, PC, floppy disk unit, etc. its associated profile program P997xxx must also be saved.

4.4 SURFACE MILLING OPERATION

Press *to* select the surface milling operation.


One must define

The type of milling, the starting point (X1, Y1), the dimensions of the surface to be milled (L, H, E) and the machining conditions in Z (Zs, Z, P, I, Fz)

On the other hand, one must define the milling step (Δ) in the data area for the roughing operation and the finishing stock (δz) in the data area for the finishing operation.

4.4.1 DEFINING DATA

Type of surface milling

To select the type of surface milling, place the cursor over this icon and press

Coordinates of the starting point

These coordinates are defined one by one. After placing the cursor over the axis coordinates to be defined, it is possible:

- a) To enter the value by hand. Key in the value and press 4
- b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or with the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value displayed in the upper right-hand window.

Press Press

4.4 Surface milling operation

Surface dimensions (L, H, E)

They are defined one by one. Place the cursor in the corresponding window, key in the desired value and press $\overbrace{+}^{\text{ENTER}}$

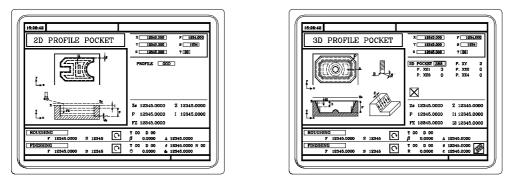
When programming parameter $\langle E \rangle$ with a smaller value than the tool radius, the CNC executes the planning with an $\langle E \rangle$ value equal to the tool radius.

Machining conditions in Z (Zs, Z, P, I, Fz)

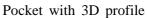
The machining conditions are defined one by one.

The Zs and Z values are defined like the starting and end points.

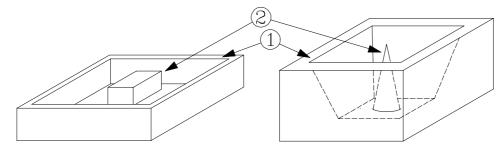
To define the rest of the values (P, I, Fz), place the cursor in the corresponding window, key in the desired value and press $\begin{bmatrix} ENTER \\ \bullet \end{bmatrix}$


<u>Milling step (Δ) and finishing stock ($\delta \chi$)</u>

They are defined one by one. Place the cursor in the corresponding window, key in the desired value and press $\left[\stackrel{\text{ENTER}}{\longrightarrow} \right]$



4.5 POCKET CYCLE WITH A PROFILE


To select a profile milling operation, press This cycle may be defined in two different ways:

Pocket with 2D profile

A pocket consists of contour or outside profile (1) and a series of contours or profiles internal to it. These inside profiles are referred to as islands.

2D pockets (upper left-hand figure) have all the walls of the outside profile plus those of the vertical islands.

3D pockets (upper right-hand figure) may have one, several or all the walls of the outside profile and/ or those of the non-vertical islands (up to a maximum of 4).

Programming pockets with 2D profiles

When defining the Profile, one must specify the contour or contours of the islands besides the outside contour of the pocket.

The machining operation in Z is defined by means Coordinate of the safety planeZs Pocket depthP Penetration feedrate in ZFz	s of : Coordinate of the part surfaceZ Step in ZI
In the area for the roughing operation data, define The lateral penetration angle β	
In the area for the finishing operation data, defines The lateral penetration angle θ Finishing stock at the bottom δz	Finishing stock on the walls δ Number of finishing passes in ZN

- 4. Work with operations or cycles
- 4.5 Pocket cycle with a profile

Programming pockets with 3D profiles

Pocket ID number. (3D POCKET)

It is possible to have several 3D pockets. The CNC associates with each 3D pocket all its data (surface profile, depth profile, machining conditions, etc.)

Surface profile or profile in the X,Y plane. Profile (P. XY). It must indicate the contour or contours of the possible islands besides the outside contour of the pocket.

Depth profile corresponding to the profile defined first. Profile (P. Z1) It usually corresponds to the outside contour of the pocket.

Depth profile corresponding to the profile defined second . Profile (P. Z2) It usually corresponds to the contour of the island defined first.

Depth profile corresponding to the profile defined third. Profile (P. Z3) It usually corresponds to the contour of the island defined second.

Once all the profiles have been defined, the 3D pocket configuration must be validated. To do so,

place the cursor over	r the 🔀	icon	and	pı
The cycle will show	the 🗸	icon.		

The machining operation in Z is defined by means of: The coordinate of the safety planeZs Pocket depth......P Penetration feedrate in Z.....P In the area for roughing data, the following must be defined: Lateral penetration angle β Milling pass Δ In the area for finishing data, the following must be defined: Tool tip radiusR Finishing pass ϵ

Direction of the finishing passes on the walls in the finishing passes on the walls

- **Notes:** The pocket configuration program and the profile programs can also be accessed in the "M" mode since the CNC stores them internally as:
 - P995xxx 3D pocket configuration
 - P998xxx The XY plane profiles in 2D and 3D pockets

www.EngineeringBooksPdf.com

P996xxx Depth profiles in 3D pockets

Depth profile corresponding to the profile defined fourth. Profile (P. Z4) It usually corresponds to the contour of the island defined third.

4.5.1 DATA DEFINITION

Machining conditions in Z (Zs, Z, P, Fz, I, I1, I2)

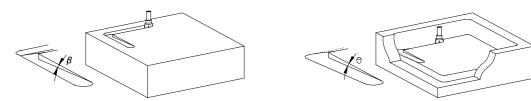
The machining conditions must be defined one by one.

To define the values (P, Fz, I, I1, I2), place the cursor in the corresponding window, key in the desired value and press

To define the values (Zs and Z), after placing the cursor in the corresponding window, one may:

- a) Enter the value by hand. Key in the desired value and press
- b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.



for the selected data to assume the value shown in the upper right-hand window.

Milling pass (Δ) and finishing passes (ϵ)

Place the cursor in the corresponding window, roughing or finishing operation, key in the desired value and press

Lateral penetration angles (β, θ)

Place the cursor in the corresponding window, roughing or finishing operation, key in the desired value and press

Finishing stocks: on the walls (δ) and at the bottom (δ)

Place the cursor in the corresponding window, finishing operation, key in the desired value and press

<u>Finishing tool tip radius (R)</u>

Place the cursor in the corresponding window, finishing operation, key in the desired value and press

Direction of the finishing passes on the walls

www.EngineeringBooksPdf.com

To select the direction of the finishing passes on the walls,

place the cursor over this icon and press

- 4. Work with operations or cycles
- 4.5 *Pocket cycle with a profile*

4.5.2 **PROFILE DEFINITION**

To define a Profile, after selecting the corresponding window, one can:

Key in the "Profile Program" number directly.

To move around within a window, use

If the "Profile program" number is known, key it in and press <u>Access the "Profile Program" directory to select one of them</u>

Press The cycle will show a window with the profile programs already defined. There are 3 directories, one for the pocket configuration profiles, another one for the XY plane profile and a third one for the depth profile of the pocket.

Place the cursor over the desired program and press

Thee the cursor over the desired program and press

To exit this window without selecting any program, use $\left| \left(\leftarrow \right) \right| \left| \left(\rightarrow \right) \right|$

Edit a new "Profile program"

To edit a new "Program", key the program number (between 0 and 999) and press

†

The CNC will display the window for the profile editor (see Operating manual of the 8055 M CNC, chapter 4 section "Profile Editor").

Once the profile has been edited, the CNC requests a comment to be associated with the "Profile Program" just edited.

Enter the desired comment and press \swarrow If no comment is desired, press \checkmark

Modify an existing "Profile program".

To modify a "Program", key in its number and press

The CNC will display the profile currently defined in the window for the profile editor.

One can: Add new elements at the end of the current profile. Modify the data of any element. Modify or insert chamfers, roundings, etc. Delete elements from the element.

An intermediate element of the profile CANNOT be deleted directly. To do it, all the elements must be deleted one by one starting with the one defined last until reaching to the desired one.

Delete an existing "Profile Program".

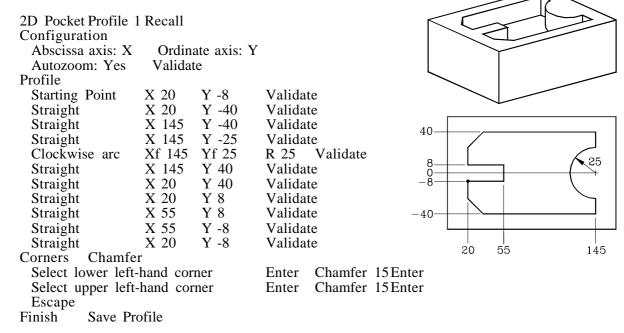
Press the cycle will show the profile programs already defined.

Place the cursor over the "Profile Program" to be deleted and press

The CNC will request confirmation.

<u>Notes:</u> Profile programs can also be accessed in the "M" mode since the CNC stores them internally as:

P995xxx The 3D configuration profilesP998xxx The XY plane profiles in 2D and 3D pockets.P996xxx The depth profiles of 3D pockets


www.EngineeringBooksPdf.com

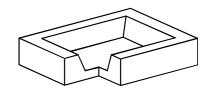
When saving a part-program containing a pocket cycle with profile out to an external device, PC, floppy disk unit, etc. its associated profile programs must also be saved.

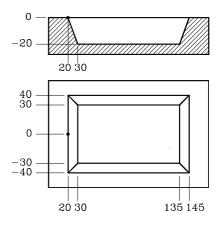
4.5.3 EXAMPLES OF PROFILE DEFINITION

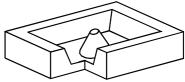
Example of how to define a 2D pocket without islands:

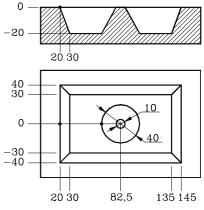
Example of how to define a 2D profile with islands:

2D Pocket Profile	2 Recall				
Configuration					
Abscissa axis: X	Ordina	ate axis: Y	7		
Autozoom: Yes	Validat	e			
Profile (outside pr	ofile)				
Starting Point	X 20	Y 0	Validate		
Straight	X 20	Y -40	Validate		
Straight	X 145	Y -40	Validate		40
Straight	X 145	Y 40	Validate		25
Straight	X 20	Y 40	Validate		
Straight	X 20	Y 0	Validate		25
Corner	Chamfer	r			-25
Select lower left	t-hand corr	ner	Enter		-40
	Chamfer	15	Enter		
Select lower right	ht-hand co	orner	Enter		 20 50
U	Chamfer		Enter		20 00
Select upper rig	ht-hand co	orner	Enter		
11 0	Chamfer		Enter		
Select upper left	t-hand cor	ner	Enter		
11	Chamfer		Enter		
Escape					
	and)				
Profile	,				
Starting Point	X 115	Y -25	Validate		
Straight	X 115	Y 0	Validate		
Clockwise arc	Xf 90	Yf 25	Xc 115	Yc 25	R 25 Validate
Straight	X 50	Y 25	Validate		
Straight	X 50	Y 0	Validate		
Clockwise arc	Xf 75	Yf -25	Xc 50	Yc -25	R 25 Validate
Straight	X 115	Y -25	Validate		
Finish	Save Pro	ofile			




25

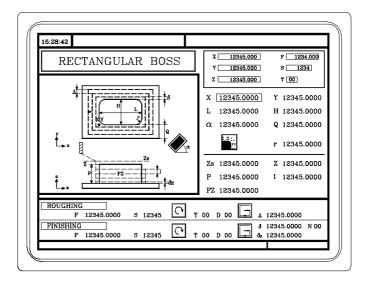

115 145


- 4.5 Pocket cycle with a profile
- Example of how to define a 3D pocket without islands:

3D Pocket= 1			
P.XY=3 Recall			
Configuration		Ordinata	ania. V
Abscissa axis: X		Ordinate	axis: r
Autozoom: Yes		Validate	
Profile (outside j			** ** *
Starting Point	X 20	Y 0	Validate
Straight	X 20	Y -40	Validate
Straight	X 145	Y -40	Validate
Straight	X 145	Y 40	Validate
Straight	X 20	Y 40	Validate
Straight	X 20	Y 0	Validate
Finish	Save Pr	ofile	
P.Z1 = 1 Recall			
Configuration			
Abscissa axis: X		Ordinate	axis [.] Z
Autozoom: Yes		Validate	unio. <i>L</i>
Profile (depth pr	ofile)	vandate	
		Z 0	Validata
Starting Point	X 20		Validate
Straight	X 30	Z -20	Validate
Finish	Save Pr	ofile	

Example of how to define a 3D pocket with islands:

3D Pocket= 2


P.XY = 4 Recall Configuration Abscissa axis: X Ordinate axis: Y Autozoom: Yes Validate Profile (outside profile) Y 0 Starting Point X 20 Validate X 20 Y -40 Straight Validate Ý -40 Straight X 145 Validate Straight X 145 Y 40 Validate Straight X 20 X 20 Y 40 Validate Straight Y 0 Validate New Profile (island) X 62.5 Y0 Xc 82.5 Yc 0 Validate Circle Save Profile Finish P.Z1= 2 Recall Configuration Abscissa axis: X Ordinate axis: Z Autozoom: Yes Validate Profile (outside depth profile) **X** 20 Validate Starting Point \mathbf{Z} 0 Straight X 30 Z -20 Validate Save Profile Finish P.Z2 = 3Recall Configuration Abscissa axis: X Ordinate axis: Z Autozoom: Yes Validate (depth profile of the island) Profile Starting Point X 77.5 Z 0 Validate Straight X 62.5 Z -20 Validate Finish Save Profile

FAGOR

4.6 RECTANGULAR AND CIRCULAR BOSS CYCLES

To select the boss cycles, press

Rectangular Boss cycle

One must define The starting point (X,Y), the dimensions of the boss (L,H), the inclination angle (α), the amount of material to be removed (Q), the type of corner and the machining conditions in Z (Zs, Z, P, I, Fz)

In the roughing area, define the milling step (Δ) and the machining direction \neg

In the finishing area, define the finishing stocks (δ and δ z), the number of finishing passes and the machining direction

15:28:42 X 12345.000 F 1234.000 CIRCULAR BOSS Y 12345.000 s 1234 Z 12345.000 т 00 Xc 12345.0000 Yc12345.0000 12345.0000 Q 12345.0000 Zs 12345.0000 Z 12345.0000 12345.0000 Р I 12345.0000 FZ 12345.0000 ROUGHING **(**) T 00 D 00 1 A 12345.0000 F 12345.000 S 12345 FINISHING ð 12345.0000 0 T 00 D 00 12345.0000 S 12345 12345.0000

One must define

Circular boss cycle

The center coordinates (Xc, Yc), the boss radius (R), the amount of material to be removed (Q) and the machining conditions in Z (Zs, Z, P, I, Fz)

In the roughing area, define the milling step (Δ) and the machining direction \Box

In the finishing area, define the finishing stocks (δ and δ z), the number of finishing passes and the machining direction

- 4. Work with operations or cycles
- 4.6 Rectangular and Circular Boss cycles

4.6.1 DATA DEFINITION

Coordinates of the starting point

These coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

- a) Enter the value by hand. Key in the desired value and press
- b) Assign the position of the axis.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value appearing in the upper right-hand window.

Press

Rectangular Boss: Dimensions, inclination angle and material to be removed

They are defined one by one. Place the cursor in the corresponding window, key in the desired value and press $\begin{bmatrix} \text{ENTER} \\ \bullet \end{bmatrix}$

To select the type of corner, place the cursor over this icon and press

Circular: Center coordinates, radius and material to be removed

They are defined one by one.

The center coordinates (Xc, Yc) are defined like the starting and end points.

To define the rest of the values (R, Q) place the cursor in the corresponding window, key in the desired value and press $\begin{bmatrix} \text{ENTER} \\ \bullet \end{bmatrix}$

Machining conditions in Z (Zs, Z, P, I, Fz)

They are defined one by one.

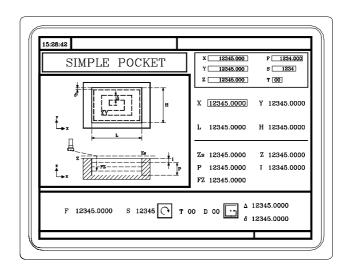
The Zs and Z values are defined like the starting and end points.

To define the rest of the values (P, I, Fz), place the desired value and press

Milling pass (A)

Finishing stocks: on the walls (δ) and at the bottom (δ z) Number of finishing passes (N)

Place the cursor in the window for the finishing operation, key in the desired value and press



4.7 RECTANGULAR (2 LEVELS) AND CIRCULAR POCKET CYCLES

To select these cycles press

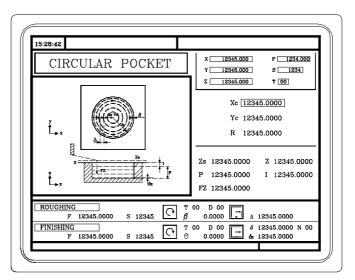
Rectangular pocket cycle (Level 1)

One must define The starting point (X, Y), the pocket dimensions (L, H) and the machining conditions in Z (Zs, Z, P, I, Fz)

One must also define the milling pass (Δ), the finishing stock (δ) and the machining direction \Box

Rectangular pocket cycle (Level 2)

RECTANGULAR POCKET	X 12345.000 P 1234.000
	Y <u>12345.000</u> S <u>1234</u> Z <u>12345.000</u> T <u>00</u>
* 	Z 12345.000 T 00
	X 12345.0000 Y 12345.0000
╷╎┝╈═╧═┘┆╢││署	L 12345.0000 H 12345.0000
	α 12345.0000
	r 12345.0000
	Zs 12345.0000 Z 12345.0000
	P 12345.0000 I 12345.0000
sv z	FZ 12345.0000
ROUGHING F 12345.0000 S 12345 Ο β	
FINISHING	
F 12345.0000 S 12345	0.0000 6.12345.0000


One must define The starting point (X, Y), the dimensions of the pocket (L, H), the inclination angle (α) , the type of corner and the machining conditions in Z (Zs, Z, P, I, Fz)

In the area for roughing data, define the lateral penetration angle (β), the milling pass (Δ) and the machining direction

In the area for finishing data, define the lateral penetration angle (θ) , the finishing stocks (δ and δz), the number of finishing passes (N) and the machining direction \Box

Circular pocket cycle

One must define The center coordinates (Xc, Yc), the boss radius (R) and the machining conditions in Z (Zs, Z, P, I, Fz)

In the area for roughing data, define the lateral penetration angle (β), the milling pass (Δ) and the machining direction

In the area for finishing data, define the lateral penetration angle (θ) , the finishing stocks (δ and δ Z), the number of finishing passes (N) and the machining direction

4.7.1 DATA DEFINITION

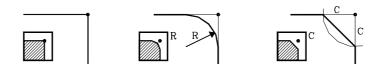
Coordinates of the starting point

The coordinates are defined one by one. After placing the cursor over the axis coordinates to be defined, one can:

- a) Enter the value by hand. Key in the desired value and press
- b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value appearing in the upper right-hand window.



Rectangular Pocket: Dimensions and inclination angle

They are defined one by one. Place the cursor in the corresponding window, key in the desired value and press $\overbrace{+}^{ENTER}$

Type of corner

To select the type of corner, place the cursor over this icon and press

If, due to the dimensions of the pocket, the specified rounding or chamfer is not possible, the CNC will make a chamfer or rounding with the largest possible value.

Circular pocket: Center coordinates and radius

They are defined one by one.

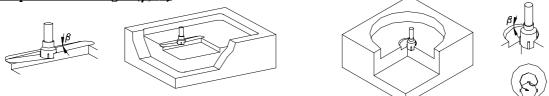
The center coordinates (Xc, Yc), are defined like the starting and end point.

To define the radius (R), place the cursor in the corresponding window, key in the desired value

and press

Machining conditions in Z (Zs, Z, P, I, Fz)

They are defined one by one.

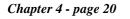

The Zs and Z values are defined like the starting and end point.

To define the rest of the values (P, I, Fz), place the cursor in the corresponding window, key in the desired value and press

<u>Milling pass (Δ)</u> Finishing stocks: on walls (δ) and at the bottom (δ) <u>Number of finishing passes (N)</u>

Place the cursor in the window for finishing operation, key in the desired value and press

Lateral penetration angle (β, θ)

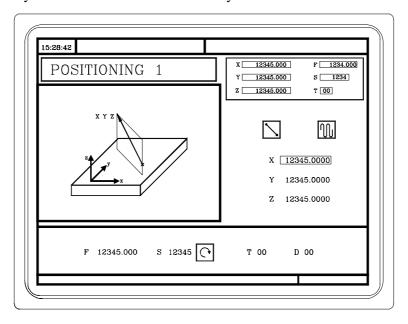


In the rectangular pocket, the penetration is carried out from the center of the pocket out and following the first machining path. The passes are carried out as often as needed and the operation always concludes at the center of the pocket.

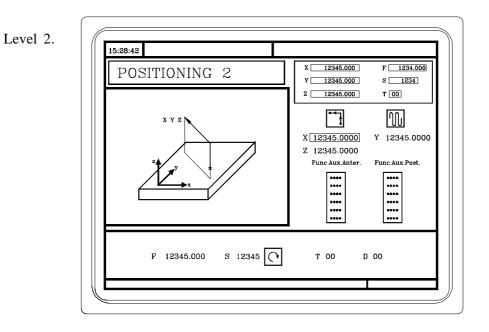
In the circular pocket, the penetration is carried out from the center of the pocket following a helical path with a radius equal to the that of the tool while keeping the machining direction. The penetration always ends at the center of the pocket.

Place the cursor in the corresponding window, roughing or finishing operation, key in the desired

value and press


FAGO

- 4. Work with operations or cycles
- 4.8 Positioning (2 levels)


4.8 POSITIONING (2 LEVELS)

To select the positioning cycle, press \checkmark This cycle may be defined in two different ways:

One must define The target point (X, Y, Z), the axes movement sequence and the type of feedrate

One must define

The target point (X, Y, Z), the axes moving sequence, the type of feedrate and the auxiliary functions "M" to be executed before and after the movement.

4.8.1 DATA DEFINITION

Coordinates of the target point

These coordinates are defined one by one. After placing the cursor over the axis coordinates, on can:

- a) Enter the value by hand. Key in the desired value and press $\left| \right\rangle$
- b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

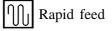
Press $\overbrace{}^{\text{RECALL}}$ for the selected data to assume the value appearing in the upper right-hand window.

Axes moving sequence

×,

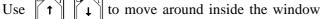
All three axes at the same time

First the Z axis and then in the plane (X and Y axis at the same time)


Firs in the plane (X and Y at the same time) and then the Z axis

To select the moving sequence, place the cursor over this icon and press

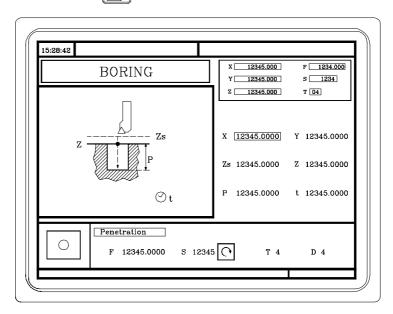
Type of axis feedrate


Programmed feedrate

To select the type of feedrate, place the cursor over this icon and press

Select the corresponding window with $\left(\begin{array}{c} \leftarrow \end{array} \right)$

The functions will be executed in the same order as inserted in the list.


www.EngineeringBooksPdf.com

To delete a function, select it and press

4.9 BORING OPERATION

То	select	the	boring	operation,	press	
----	--------	-----	--------	------------	-------	--

One must define

The machining point (X, Y), the coordinate of the safety plane (Zs), the coordinate of the part surface (Z), The total machining depth (P) and the dwell at the bottom (t)

The Boring operation may be carried out in the indicated position (X,Y) or a positioning may be associated with it by means of the ight for for for for for for the formula of the for

4.9.1 DATA DEFINITION

Coordinates of the machining point

These coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

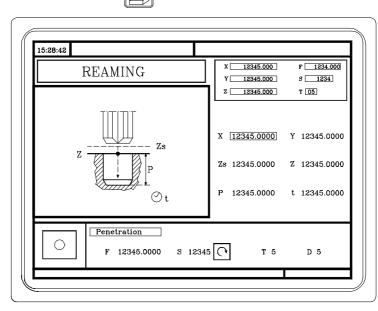
- a) Enter the value by hand. Key in the desired value and press
- b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value appearing in the upper right-hand window.

Machining conditions in Z (Zs, Z, P, t)

The machining conditions are defined one by one.


The Zs and Z values are defined like those of the machining point.

www.EngineeringBooksPdf.com

4.10 REAMING OPERATION

To select the Reaming operation, press

One must define

The machining point (X, Y), the coordinate of the safety plane (Zs), the coordinate of the part surface (Z), the total machining depth (P) and the dwell at the bottom (t)

4.10.1 DATA DEFINITION

Coordinates of the machining point

These coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

a) Enter the value by hand. Key in the desired value and press 4

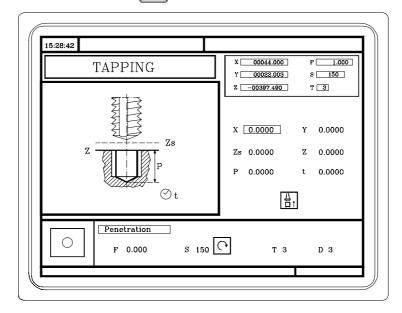
b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value appearing in the upper right-hand window.

Machining conditions in Z (Zs, Z, P, t)

The machining conditions are defined one by one.


The Zs and Z values are defined like those of the machining point.

To define the rest of the values (P, t), place the cursor in the corresponding window, key in the desired value and press $\begin{bmatrix} ENTER \\ \bullet \end{bmatrix}$

4.11 TAPPING OPERATION

To select the tapping operation, press

One must define The machining point (X, Y), the coordinate of the safety plane (Zs), the coordinate of the part surface (Z), the total machining depth (P) and the dwell at the bottom (t) and the type of Tapping.

The Tapping operation can be carried out in the indicated position (X,Y) or a positioning may be associated with it by means of the ight for for for for for for the formula of the fo

4.11.1 DATA DEFINITION

Coordinates of the machining point

These coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

- a) Enter the value by hand. Key in the desired value and press 4
- b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value appearing in the upper right-hand window.

Machining conditions in Z (Zs, Z, P, t)

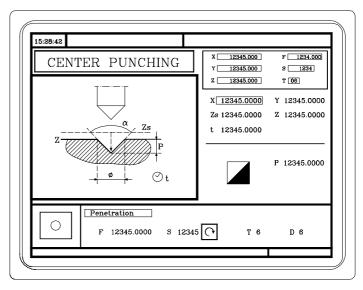
The machining conditions are defined one by one.

The Zs and Z values are defined like those of the machining point.

To define the rest of the values (P, t), place the cursor in the corresponding window, key in the desired value and press $\left[\begin{array}{c} \mathbb{E} \\ \mathbb{E$

Type of tapping

Rigid tapping Without clutch



Regular tapping With a clutch

To select the type of tapping, place the cursor over this icon and press

4.12 DRILLING (2 LEVELS) AND CENTER PUNCHING OPERATIONS

To select the Drilling and Center Punching operations, press Center punching operation

One must define

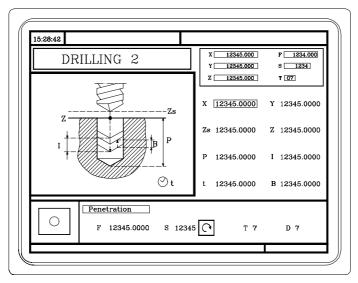
The punch point (X, Y), the coordinate of the safety plane (Zs), the coordinate of the part surface (Z), the total machining depth (P) and the dwell at the bottom (t) and the type of center punching.

The center punching operation can be carried out in the indicated position (X,Y) or a positioning may be associated with it by means of the f(X,Y) keys as described later on.

Drilling operation. Level-1

15:28:42 DRILLING 1	X 12345.000 F 1234.000 Y 12345.000 S 1234
Z Zas	z 12345.0000 T 107 X 12345.0000 Y 12345.0000
P I	Zs 12345.0000 Z 12345.0000 P 12345.0000 l 12345.0000
⊘ t Penetration	t 12345.0000
F 12345.0000 S 1234	5 C T 7 D 7

One must define The drilling point (X, Y), the coordinate of the safety plane (Zs), the coordinate of the part surface (Z), the total machining depth (P), the drilling peck and the dwell at the bottom (t).


The drilling operation can be carried out in the indicated position (X,Y) or a positioning may be associated with it by means of the \mathcal{A} the keys as described later on.

www.EngineeringBooksPdf.com

FAGOR

Chapter 4 - page 27

Drilling operation. Level 2

One must define The machining point (X, Y), the coordinate of the safety plane (Zs), the coordinate of the part surface (Z), the total machining depth (P), the drilling peck (I), the dwell at the bottom (t) and the withdrawal distance after each penetration (B)

The Drilling operation may be carried out in the indicated position (X,Y) or may be associated with a positioning using the ight result is indicated by the set of the set o

4.12.1 DATA DEFINITION

Coordinates of the machining point

These coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

- a) Enter the value by hand. Key in the desired value and press |
- b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value appearing in the upper right-hand window.

Press Press

Machining conditions in Z (Zs, Z, P, I, t, B)

The machining conditions are defined one by one.

The Zs and Z values are defined like the coordinates of the machining point.

To define the rest of the values (P, I, t, B), place the cursor in the corresponding window, key in the desired value and press $\begin{bmatrix} ENTER \\ \bullet \\ \bullet \end{bmatrix}$

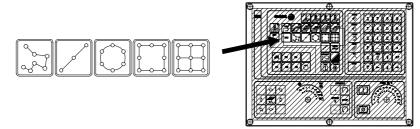
One must define The machining point (X, Y), the machining conditions in Z (Zs, Z, t) and the type of center punching.

Type of center punching

The type of center punching may be defined in two ways:

- a) By defining the total machining depth (P)
- b) By defining the punch angle (α) and the diameter of the point (Φ)

To select the type of center punching, place the cursor over this icon and press To define the "P, α , Φ " values, place the cursor in the corresponding window, key in the desired


value and press

4.13 MULTIPLE POSITIONING

With this CNC, it is possible to associate multiple positioning with Boring, Reaming, Tapping, Drilling and Center Punching operations.

The following keys of the "8055 MC" CNC must be used to select this feature.

When pressing one of these keys, the CNC selects the corresponding type of positioning and it changes the display.

It keeps the lamp ON of the key corresponding to the selected operation (Boring, Reaming, etc.) and the bottom of the screen shows the data for that operation.

www.EngineeringBooksPdf.com

The types of multiple positioning that can be selected with each key are

At random points

In a straight line

In a bolt-hole pattern

In a parallelogram pattern

In a grid pattern

4.13.1 MULTIPLE POSITIONING AT RANDOM POINTS

To associate this positioning with an operation, press $\left\| \begin{array}{c} \ddots \\ \ddots \end{array} \right\|_{\infty}$

Up to 12 points can be defined. Coordinates (X1, Y1) (X12, Y12)

When not using all 12 points, the first unused point must be defined with the same coordinates as those of the last point.

Point definition

The coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

a) Enter the value by hand. Key in the desired value and press |

www.EngineeringBooksPdf.com

b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

4.13.2 MULTIPLE POSITIONING IN A STRAIGHT LINE

15:28:42 X 12345.000 F 1234.000 LINEAR POSIT. Y 12345.000 s 1234 Z 12345.000 T 00 X1 12345.0000 Y1 12345.0000 in Yn Xn 12345.0000 Yn 12345.0000 N 12345.0000 Drilling B 1234.000 ij Z 1234.000 P 1234.000 t 1234.000 I 1234.000 Zs 1234.000 s 12345 🔿 F 12345.0000 T 00 D 00

To associate this positioning with an operation, press

This may be defined in 5 different ways:

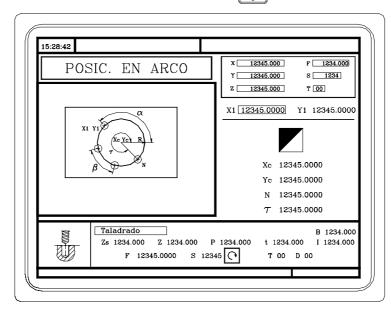
1)	The coordinates of the first point	n, Yn)
2)	The coordinates of the first point	n, Yn)
3)	The coordinates of the first point	(α) (L)
4)	The coordinates of the first point (X) The inclination angle Total distance from first to last point Number of points	(α) (L)
5)	The coordinates of the first point	(α) (N)
To selec	ct the desired one, place the cursor over the icon and pres	ss 🚺

Point definition

The coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

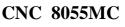
a) Enter the value by hand. Key in the desired value and press

b) Assign the current axis position.


Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value shown in the upper right-hand window.

To define the rest of the values (I, N, α , L), place the cursor in the corresponding window, key in the desired value and press



To associate this positioning with an operation, press

This could be defined in 6 different ways:

]]	The coordinates of the first point
]	The angular distance between points(f
4		The coordinates of the first point
		The radius
]	The angle of the first point
]	The angle of the last point
	']	The angular distance between points(f
		The coordinates of the first point (X1, Y1
		The center coordinates(Xc, Yc
]	The number of points(N
]	The angle of the last point(7
2	4) 7	The coordinates of the first point (X1, Y1
		The center coordinates(Xc, Yc
		The number of points
]	The angular distance between points
4	5) 7	The coordinates of the first point
		The radius
		The angle of the first point
]	The number of points
]	The angle of the last point
(6)]	The coordinates of the first point
		The radius
	7	The angle of the first point
	ſ	The number of points
]	The angular distance between points
То	select	the desired one, place the cursor over the icon and press

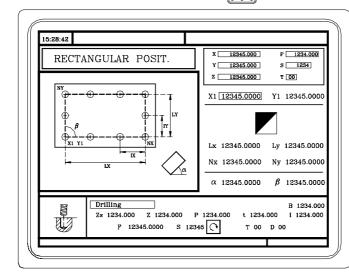
Point definition

The coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

a) Enter the value by hand. Key in the desired value and press $\left| \begin{array}{c} {}^{\text{ENTER}} \\ {}^{\text$

b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.


for the selected data to assume the value shown in the upper right-hand window. Press

To define the rest of the values (R, N, α , β , τ), place the cursor in the corresponding window, key in the desired value and press ÷

4.13.4 MULTIPLE POSITIONING IN A PARALLELOGRAM PATTERN

To associate this positioning with an operation, press $\left\| { \right\| }$

This could be defined in 3 different ways:

	1)	The	coordinates of the first point	1, Y1)
			lengths in X, Y (Li	
			X and Y distances between points (I	
		The	rotation angle	(α)
		The	angle between the sides	(β)
	2)	The	coordinates of the first point	1, Y1)
	,		lengths in X and Y (Lt	
		The	number of points in X and Y (Nx	(Nv)
			rotation angle	
			angle between the sides	
	3)	The	coordinates of the first point	l, Y1)
			X and Y distances between points	
			number of points in X and Y (Nx	
		The	rotation angle	(α)
			rotation angle	
То	select	t the	desired one, place the cursor over the icon and pre	ess

Point definition

The coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

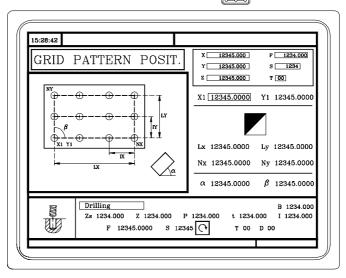
a) Enter the value by hand. Key in the desired value and press

b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

for the selected data to assume the value shown in the upper right-hand window.

Press Press


Press \checkmark To define the rest of the values (Lx, Ly, Ix, Iy, α , β , Nx, Ny), place the cursor in the corresponding

window, key in the desired value and press

4.13.5 MULTIPLE POSITIONING IN A GRID PATTERN

To associate this positioning with an operation, press

This could be defined in 3 different ways:

1)	The coordinates of the first point The lengths in X, Y The X and Y distances between points The rotation angle The angle between the sides	(Lx, Ly) (Ix, Iy) (α)
2)	The coordinates of the first point	. (X1, Y1)
,	The lengths in X and Y	
	The number of points in X and Y	(Nx, Ny)
	The rotation angle	
	The angle between the sides	(β)
3)	The coordinates of the first point	. (X1, Y1)
	The X and Y distances between points	
	The number of points in X and Y	
	The rotation angle	(α)
	The rotation angle	
To selec	ct the desired one, place the cursor over the icon and	press

Point definition

The coordinates are defined one by one. After placing the cursor over the axis coordinates, one can:

a) Enter the value by hand. Key in the desired value and press

b) Assign the current axis position.

Jog the axis to the desired point with the handwheel or the JOG keys. The upper right-hand window shows the tool position at all times.

Press for the selected data to assume the value shown in the upper right-hand window. Press $\begin{bmatrix} \text{ENTER} \\ \bullet \end{bmatrix}$

To define the rest of the values (Lx, Ly, Ix, Iy, α , β , Nx, Ny), place the cursor in the corresponding window, key in the desired value and press $\left[\begin{array}{c} \mathbb{R} \\ \mathbb{R$

5. STORAGE OF PROGRAMS

This CNC allows the editing, simulating and executing of part-programs.

Each of these programs consists of the interlinking of elementary operations or cycles and/or blocks edited in ISO code. The form of editing or defining said operations or cycles is explained in the previous chapter.

This chapter explains how to operate with these part-programs and has the following sections and subsections for this purpose.

List of programs stored See the content of a program See one of the operations in detail Edit a new part-program...... Storage of an operation or cycle Erase a part-program Copy one part-program in another Modify a part-program Erase an operation Move an operation to another position Add or insert to a new operation Modify an already existing operation

5.1 LIST OF STORED PROGRAMS

To access the list of part-programs stored press

Note:	If the «Tool Calibration» mode is sele	cted yo	u cannot directly	access the list of	part-programs.	This
	mode must first be left, that is, press	ESC	and then] .		

P.PROG

The CNC will display the following information:

PROGRAMS – PARTS	CYCLES
CREATE A PART N 1 - XFT123 2 - ABZ 2343 22 - 23 - 118 - MTB 234A 285 - XFT 127B 764 - 777 - 832 - ABZ 2347C 833 - 1234 - 1236 - MTB 238 1245 - MTB 3434	 1 BIDIR. MILLING ON X 2 RECTANGULAR POCKET 3 CIRCULAR POCKET 4 DRILLING 1 + GRID POSITIONING 5 TAPPING + GRID POSITIONING

On the left there is a list of part-programs that are stored in the CNC's memory.

When there are more programs than those displayed in the window, us	se keys \uparrow and \downarrow to move
the pointer over the list of programs. To go forward or backward p	age by page use the following
combinations of keys (\uparrow) (\uparrow) and (\uparrow)	

The right-hand column will display the cycles and/or ISO-coded blocks that said part consists of.

After selecting the program list, the CNC will let you:

Create a new part-program See the content of a part-program Erase a part-program Copy a part-program in another
Modify a part-program To leave the directory or list of part-programs press:
ESC
the key for an operation
Or ISO

5.2 SEE CONTENT OF A PROGRAM

To see the content of a part-program, select this with the pointer from the left-hand column. To do this use $\begin{bmatrix} \uparrow \\ \downarrow \end{bmatrix}$ and $\begin{bmatrix} \downarrow \\ \downarrow \end{bmatrix}$

If the part-program is formed on an MC mode cycle basis, the right -hand column will display the cycles which said part consists of:

If you press $\overbrace{\bullet}^{\text{ENTER}}$ or $\overbrace{\bullet}^{\text{enter}}$ the pointer goes on to the right-hand column.

Now keys \uparrow and \downarrow let the pointer be moved over the blocks or cycles which make up the part.

To sum up, use keys:

to move up and down in each one of the columns

to change the column

After selecting an operation, the CNC allows:

Seeing the operation in detail Erasing the operation Moving the operation to another position Modifying the operation

5.2.1 SEEING THE OPERATIONS IN DETAIL

After selecting the operation required, with the pointer, press

The CNC will display all the data for said operation.

Now you can:

Simulate the operation. (See following chapter). Execute the operation. (See following chapter). Modify the operation Store the operation. Replace the previous one or including this as a new one.

5.3 EDIT A NEW PART-PROGRAM

To edit a new part-program the following steps should be taken:

- * Press $\left[\begin{array}{c} P.PROG \\ \hline \end{array} \right]$ to access the list of part-programs stored.
- * Use the pointer to select the option "--Create new part --2" in the left-hand column.
- * Press $\left[\sum_{i=1}^{\frac{P,PROG}{2}} \right]$. The CNC will ask at the bottom for the number to be given to the new part-program, prompting the first one available.
- * Type in the program number required and press

This must be a number between 1 and 899999, and both numbers can be used.

* The CNC will ask for the comment to be assigned to the part-program.

A comment does not have to be associated.

* Press
$$\overbrace{\bullet}^{\text{ENTER}}$$
 or $\overbrace{\leftarrow}^{\text{ESC}}$

The CNC includes the new part-program in the list of part-programs (left-hand column).

From this time all the operations required can be stored, and in the required order.

5.3.1 STORAGE OF AN OPERATION OR CYCLES

A block or cycle can be added at the end of the program, after the last operation, or inserted between 2 existing operations.

To store the block or cycle, follow these steps:

- * Define the desired block or cycle, assigning the relevant data to it.
- * Press $\overbrace{}^{P,PROG}$ to access the list of part-programs stored.
- * Use the pointer to select the program number required in the left-hand column and go on to the right-hand column.
- * Move over the operation after which the operation is to be stored and press

Example: You have

- 1.- Bidirectional surface milling in X
- 2.- Rectangular Pocket
- 3.- Circular Pocket
- 4.- Drill 1 + Grid pattern positioning
- 5.- Tapping + Grid pattern positioning
- You want
- 1.- Bidirectional surface milling in X
- 2.- Rectangular Pocket
- 3.- Circular Pocket
- 4.- Drilling 1 + Positioning in Line
- 5.- Drill 1 + Grid pattern positioning 6.- Tapping + Grid pattern positioning
- 7.- Profile 1
- 4.- Drilling 1 + Positioning in Line Once the operation is defined, place the cursor over "operation 3.- Circular Pocket" and press [ENTER].
- 7.- *Profile 1* Once the operation is defined, place the cursor over "5.- Tapping + Grid pattern positioning" and press [ENTER].

www.EngineeringBooksPdf.com

Storage of programs

5.4 Erasing a part-program

5.5 *Copy a part-program in another*

5.4 ERASING A PART-PROGRAM

To erase a part-program follow these steps:

- * Press $\overbrace{}^{P,PROG}$ to access the list of part-programs stored.
- * Use the pointer to select from the left-hand column the part-program to be erased.
- * Press

At the bottom the CNC will display a message requesting confirmation of the erasing operation.

If you press the CNC will erase the program selected and update the list of partprograms stored.

If you press $\left| \begin{array}{c} \overset{\text{BSC}}{\frown} \right|$ the program will not be erased and the erasing operation is left.

5.5 COPY A PART-PROGRAM IN ANOTHER

To copy a part-program in another take the following steps:

* Press $\overbrace{}^{P_{\underline{P}\underline{P}\underline{O}\underline{G}}}$ to access the list of part-programs stored.

- * Use the pointer to select in the left-hand column the part-program to be copied.
- * Press $\boxed{\overset{P.PROG}{\searrow}}$

At the bottom the CNC will display a message requesting the number to be assigned to the copy.

* Type in the program number required and press |

This must be a number between 1 and 899999, and both numbers can be used.

* If there is already a part-program with said number, the CNC will display a message at the bottom, asking if this should be replaced or if you wish to cancel the operation.

If you press 4 the CNC will ask for a new program number

If you press the CNC will erase the present program and carry out program copying.

* The CNC requests the comment to be associated with the new part-program (with the copy).

A comment does not have to be associated.

* Press or

The CNC updates the list of part-programs stored.

5.6 MODIFYING A PART-PROGRAM

To modify a part-program the following steps must be taken:

- * Press $\left| \stackrel{\text{P.PROF}}{\longrightarrow} \right|$ to access the list of part-programs stored.
- * Use the pointer to select from the left-hand column the part-program you wish to modify.

After selecting the program, the CNC lets you:

Erase an operation Move an operation to another position Add or insert a new operation Modify an already existing operation.

5.6.1 ERASING AN OPERATION

To erase an operation follow these steps:

* Use the pointer to select the operation to be erased, in the right-hand column.

* Press

The CNC will display a message at the bottom, requesting the confirmation of the erasing operation.

If you press the CNC will erase the operation selected and update the right-hand column.

If you press $\left| \right|^{\text{HSC}}$ the operation is not erased and the erasing operation is left.

5.6.2 MOVING AN OPERATION TO ANOTHER POSITION

To move an operation to another position take the following steps:

- * Use the pointer to select the operation to be moved from the right-hand column.
- * Press

The CNC will display this operation in highlighted text.

* Place the cursor after the operation which the operation is to be moved to and press

www.EngineeringBooksPdf.com

Example: You have

Your want

- 1.- Bidirectional Surface Milling in X
 - 2.- Circular Pocket
 - 3.- Drilling 1 + Positioning in line 4.- Drilling 1 + Positioning in Grid
 - 5.- Tapping + Positioning in Grid
 - 6.- Rectangular Pocket
 - 7.- Profile 1

Move the cursor onto the "Tapping + Positioning in Grid" and press

1.- Bidirectional Surface Milling in X

4.- Drilling 1 + Positioning in line

6.- Tapping + Positioning in Grid

5.- Drilling 1 + Positioning in Grid

2.- Rectangular Pocket

3.- Circular Pocket

7.- Profile 1

Select the "Rectangular Pocket" and press

5.6.3 ADDING OR INSERTING A NEW OPERATION

To add or insert an operation take the same steps as to store an operation.

- * Define the operation or cycle required, assigning this the relevant data.
- * Press $\left| \sum_{i=1}^{n} \right|$ to access the list of part-programs stored.
- * Move over the operation after which the operation is to be stored and press 4

5.6.4 MODIFYING AN ALREADY EXISTING OPERATION

To modify an operation take the following steps:

* Use the pointer to select, in the right-hand column, the operation required for modification.

* Press \swarrow

The CNC will display the relevant edition page for this operation.

* Modify all the data required.

To store the modified operation again:

* Press
$$\left| \sum_{i=1}^{P,PROG} \right|$$
 to access the list of part-programs stored.

The CNC displays the pointer over the same operation.

To select another position use keys \uparrow \downarrow . The new operation will be inserted after this point.

* Press $\overbrace{+}^{\text{ENTER}}$

If one wishes to place the modified operation in its previous location, the CNC will display a message asking if one wishes to replace the previous operation or keep this, inserting the new one after.

In the following example the "Rectangular Pocket" operation is modified

www.EngineeringBooksPdf.com

You have	"Replace" option	"Insert" option
1 Rectangular Pocket 2 Circular Pocket	1 Rectangular Pocket 2 Circular Pocket	1 Rectangular Pocket2 Rectangular Pocket3 Circular Pocket

Note: One can select an existing operation, modify this and then insert this somewhere else in another part-program.

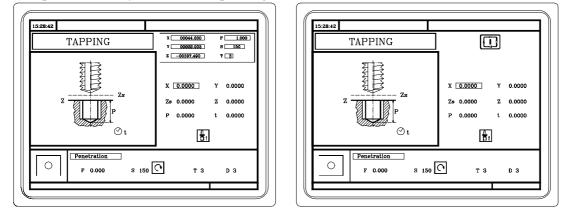
6. EXECUTION AND SIMULATION

Simulation allows graphic reproduction of a part-program or an operation with the data that has been defined.

By means of simulation, one can thus check the part-program or the operation before executing or storing this and consequently correct or modify the data:

The CNC allows a part-program or any operation to be executed or simulated. This simulation or execution can be done from beginning to end or alternatively press key $\boxed{\blacksquare}$ for this to be executed or simulated step by step.

The CNC enables execution or simulation of:


Any operation or cycle. A part-program. An operation stored as part of a part-program.

Warning	Whenever a part-program or an operation stored as part of a part-program is selected for simulation or execution, the CNC selects this part-program in the top center window and highlights it next to the symbol.
	ISER.42 PO00002 II X 00044.000 HOME X 0000.000 Y -00443.331 HOME Y 0000.000 Z -00443.331 HOME Z 0000.000 S 115 T 02 DI2 CHANCE FOSTITION Y 35.000 Y 35.000 X 05.000 T 02 DI2 DI2 CHANCE FOSTITION Y 35.000 Y 35.000 X 05.000 T 02 DI2 DI2 CHANCE FOSTITION Y 35.000 X 05.000 Coll G17 M41 PARTC : 000000 CTTBE 0 08TC HANCE 1 V -00443.331 HOME Z 0000.000 X 115 Coll C17 F 00100.000 X 0000 X 0000.000 Coll C17 M41 PARTC : 000000 CTTBE 0 00000 CTTBE 0 00000 X 00000.000 X 00000.000 X 000000 X 00000.000 X 00000 000 X 00000.000 X 00000 000 X 00000.000 X 00000 000 X 00000.000 X 00000.000 X 00000.000 X 0000.000 X 0000 X 00000.000 X 0000 X 0000 X 0000 X 00000.000 X 0000 X 0000 X 0000 X 0000 X 00000.000 X 0000 X 0000 X 0000 X 0000 X 00000 X 0000 X 0000 X 0000 X 0000 X 0000 X 00000 X 0000 X 00000 X 00000 X 0000 X 0000 X 0000 X 0000 X 0000 X 0000
	It then acts as follows: If is pressed, the CNC executes the part-program that is selected. if is pressed, the part-program is de-selected and the CNC deletes it from the top center window.

6.1 SIMULATING OR EXECUTING AN OPERATION OR CYCLE

All the operations or cycles have 2 operating modes: Execution mode and Edition Mode

Editing mode

Simulation

The operation or cycle can be simulated in both operating modes. To do this, press The CNC will display the graphic representation page for the M model.

Execution

An operation or cycle can only be executed in the cycle execution mode. The operation or cycle cannot be executed when the cycle operation mode is selected.

To exit the edition mode and go on to execution mode press $\left| \right\rangle$

To execute an operation or cycle, press

6.

- 6.2 Simulating or executing a part-program
- 6.3 Simulating or executing a stored operation

6.2 SIMULATING OR EXECUTING A PART-PROGRAM

Whenever you wish to simulate or execute a part-program do the following:

- * Press $\left| \sum_{i=1}^{P,Prog} \right|$ to access the list of part-programs stored.
- * Select the program to be simulated or executed from the left-hand column.

To simulate the part-program press and to execute this press

6.2.1 SIMULATING OR EXECUTING A SECTION OF A PART-PROGRAM

To simulate or execute a part program, proceed as follows:

* Press $\begin{bmatrix} P,PR \\ \checkmark \\ \checkmark \end{bmatrix}$

 $\left| \begin{array}{c} & \\ & \\ & \\ \end{array} \right|$ to access the list of the stored part-programs.

* Select the program in the left column and the first operation to be executed or simulated in the right column.

The simulate the part program, and T to execute it.

Warning Whenever a section of the part-program is executed, the CNC does not execute the initial subroutine 9998 associated with all part-programs.

6.3 SIMULATING OR EXECUTING A STORED OPERATION

To simulate or execute an operation which is stored as part of a part-program do the following:

* Press

- $\left| \text{to access the list of part-programs stored.} \right|$
- * Select the program which contains this from the left-hand column and the operation required to be simulated or executed from the right-hand column.

* Press
$$\swarrow$$

To simulate the operation press and to execute this press

6.4 EXECUTION MODE

When you press to execute an operation or part-program, the CNC displays the standard MC operating mode screen.

15:28:42	P000002	
X 00044.000 HOME X 0000.000 Y -00443.331 HOME Y 0000.000 Z -00443.331	D00 D12 CHANGE POSITION X 25.000 D00 Y 35.000 7 95.000 7 95.000	
S	номе z 0000.0 115	
F010)0.000 % (D80 RANGE 1

If you press

the CNC displays the special MC operating mode screen.

M0 (MSG " ") (IF P102 EQ 1 (IF P101 EQ 0 M3 (RET) N10 M4 (RET)		G01 G17 M41 PARTC : 000000 CYTIME : 00:00:00:00 TIMER : 000000:00:00
COMMAND	ACTUAL	TO GO FOLLOWING ERROR
Y 00000.000	X 00000.000 Y 00000.000 Z 00000.000 RPM	
S 0.0000	S 0.0000	S 0.0000

After selection, the operation or part can be executed as many times as necessary. To do this, after execution once more press During execution of the operation or part one can press to access the graphic representation

mode.

To stop execution press

After stopping the execution the CNC allows a tool inspection to be made. See the following section.

TOOL INSPECTION 6.4.1

The PLC mark M5050, general CNC logic input "TOOLINSP", determines when tool inspection is enabled.

TOOLINSP=0 Tool inspection is possible after pressing $| \downarrow \bigcirc \downarrow$

When pressing of program execution is interrupted. TOOLINSP=1

> Once program execution is interrupted, press T to move the axes and proceed with tool inspection.

Once Tool Inspection has been selected, it is possible to:

Move the axes to the tool change position

Move them using the handwheels or the

Select another tool

To be able to make a tool change the standard MC operating mode screen must be selected. Press T . The CNC will frame the tool number.

Key the tool number required for selection and press 4 for the CNC to select the new tool. The CNC will process the tool change.

Modify tool values (dimensions and geometry)

The CNC displays the Tool Calibration screen. Press

It is possible to change the tool dimensions (offsets I,K to compensate for tool wear) or the values for tool geometry.

To exit this screen and return to the previous one (while staying in tool inspection) press

Resume program execution.

To resume program execution, press

The CNC will reposition the tool moving it to the point where tool inspection started. Two cases are possible:

- 1.-Only one axis has been moved. The CNC repositions it and resumes execution.
- 2.-Two or more axes have been moved.

The CNC shows a window with the following options to choose the repositioning order (sequence) of the axes.

- PLANE The axes forming the main plane (X-Y) move at the same time.
- Y-X When moving the main plane axes, the Y axis moves first and then the X axis.
- X-Y When moving the main plane axes, the X axis moves first and then the Y axis. Ζ Move the Z axis.

For example, to move the Z axis first, then the Y and finally the X: [Z] [Y-X]

www.EngineeringBooksPdf.com

6.5 GRAPHIC REPRESENTATION

When you press	the CNC	displays	the M	mode	graph	ic rep	resentation	page.
To leave the graphi	c representati	ion mode	press	GRAPHICS	or			

In the CNC 8055 M Operation Manual, section «Graphics» in the «Execution / Simulation» chapter, there is an explanation of how to operate during graphic representation. Nevertheless, there will now be a brief description of the softkeys.

Type of graphics. Can be «X-Z» or «Solid X-Z»

The «X-Z» graphic is a line graphic which uses colored lines to describe tool tip movement.

The «Solid X-Z» graph starts from an initial block. During execution or simulation the tool removes material and the form of the resulting part is seen.

Zone to be displayed

Allows modification of the display zone, by defining the maximum and minimum coordinates of each axis.

To select the maximum and minimum coordinates use \uparrow \uparrow

After defining all the data press

After selecting a new display zone the CNC erases the screen showing the axes or the unmachined part.

The zone displayed cannot be modified during execution or simulation of the piece. In this case

stop execution or simulation by pressing

<u>Zoom</u>

This function allows the graphic representation zone to be increased or reduced in size.

It displays a window superimposed on the graphic represented and another on the figure in the lower right-hand part of the screen. These windows indicate the new zone of graphic representation that is being selected.

To move the window use the (\leftarrow) (\leftarrow) (\leftarrow) (\leftarrow) (\leftarrow) keys to increase or reduce its size use "+"

Each time a new display zone is selected the CNC keeps the present graphic representation. It does not erase this.

When you press it to continue with or restart execution or simulation, the present graphic representation is erased and the next starts with the new values.

The zoom function cannot be executed during execution or simulation of the part. In this case, stop execution or simulation by pressing

Graphic parameters

Simulation speed. In the top right-hand of the screen select the percentage of the simulation speed to be applied.

To select the percentage use \rightarrow \leftarrow , for the CNC to assume said value, press

Colors of the path. This only applies in line graphics (not solid). It enables selection of colors to represent fast feedrate, path with no compensation, path with compensation and threading.

the keys \leftarrow to select the color required for application.

For the CNC to assume said values press

Colors of the solid. This only applies in solid graphics (not in line graphics). It enables selection of colors to represent the cutter, the part, the axes and the clamps.

At the top right-hand side of the screen use \uparrow \downarrow keys to select the type of path and the \leftarrow \downarrow keys to select the color to be applied. For the CNC to assume said values press

Erase screen

When this option is selected the CNC erases the screen and displays the axes or the unmachined part.

The screen cannot be erased during simulation of the part. In this case stop simulation by pressing the $\boxed{\{0,1\}}$ key

After selecting the types of graphics, the display area, the graphic parameters, etc. press is start the graphic simulation.

During the graphic simulation, the CNC takes into account the simulation speed and the position of the right Manual Feedrate Override switch (0%-120% FEED).

When selecting a new simulation speed, the CNC applies a 100% of it regardless of the position of the switch.

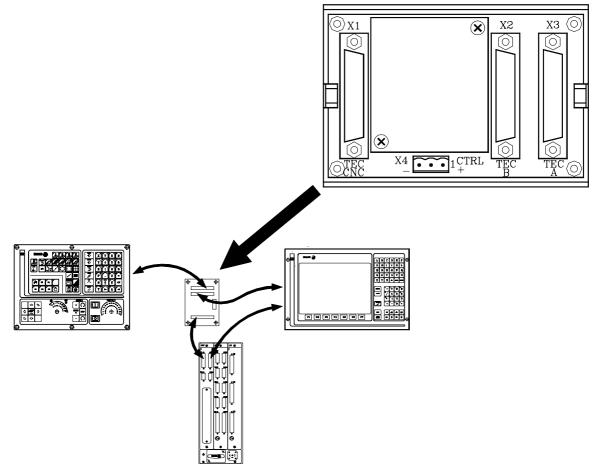
Once the switch is moved, the CNC starts applying the selected %.

www.EngineeringBooksPdf.com

То	interrupt	the	simulation,	press	

To quit the simulation mode, press

Keyboard selection	3
Key codes	5
Logic outputs for key status	7
Key inhibiting codes	9

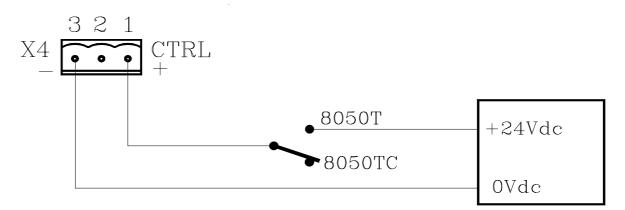


www.EngineeringBooksPdf.com

Appendix - page 1

Keyboard Selection

When 2 keyboards are available the keyboard switching board must be used.

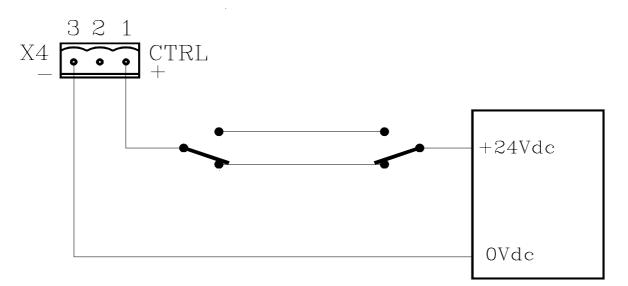


We will now explain some possibilities for keyboard selection by means of the keyboard switching board.

By means of a switch

The switch can be installed anywhere on the machine.

When it is placed in one of the positions, the MC keyboard will be selected, and when in the other position, the monitor keyboard will be selected

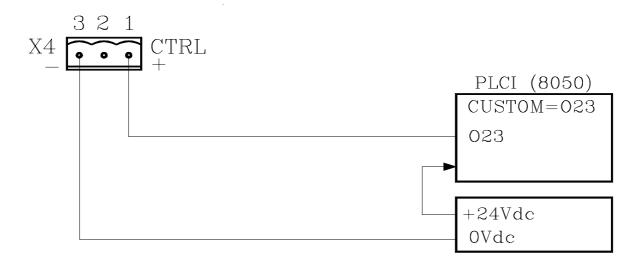

www.EngineeringBooksPdf.com

Appendix - page 3

By means of two switches

Locate each of the switches beside each of the keyboards.

Whenever the position of any switch is moved the keyboard changes, meaning that if the MC keyboard was selected it will select the Monitor keyboard and vice versa.

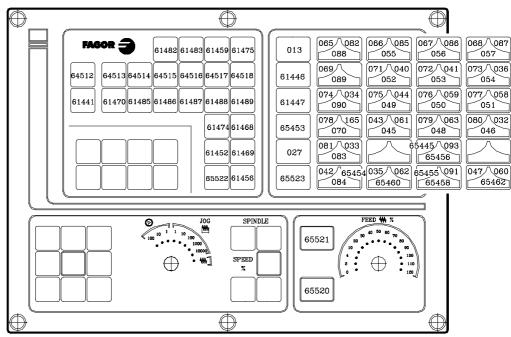

By means of the PLC

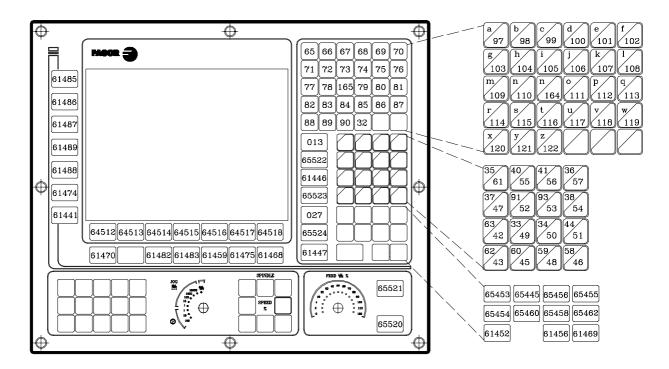
The general logic output of the CNC CUSTOM (M5512) tells the PLC the operating mode that is selected.

CUSTOM $(M5512) = 0$	The M operating mode is selected.
CUSTOM $(M5512) = 1$	The MC operating mode is selected.

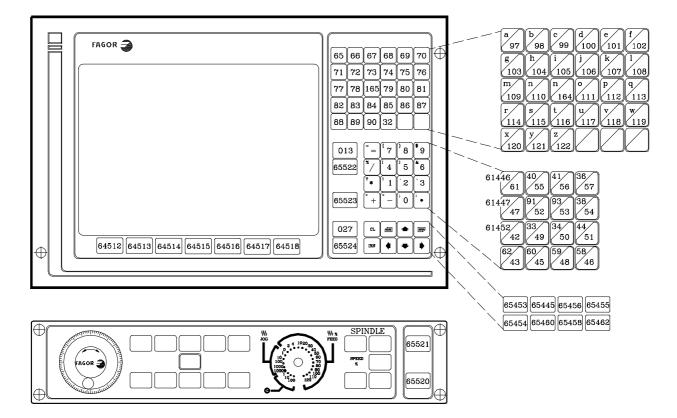
If the sentence CUSTOM=O23 is programmed in the PLC, output O23 indicates the operating mode selected in the CNC.

For this reason, if the connections are made as in the figure, every time the operating mode is changed the relevant keyboard will be selected.



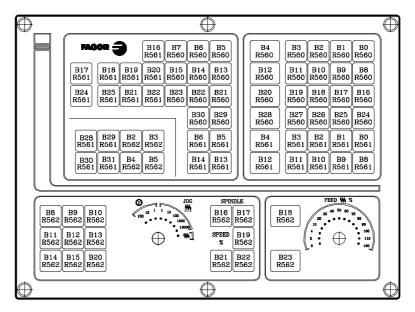

KEY CODES

Key codes returned by the customizing instruction (WKEY) in the KEY variable.

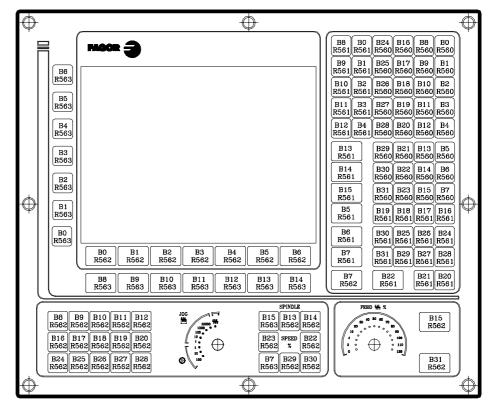

MC keyboard

11" LCD Monitor keyboard

14" color monitor keyboard



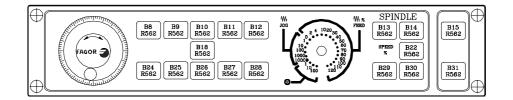
Logic outputs for key status


Registers KEYBD1 (R560), KEYBD2 (R561) and KEYBD3 (R562) indicate to the PLC whether any key is pressed.

When a key is pressed, its corresponding bit will be at logic state high (1) and will go back low (0) when the key is released.

MC keyboard

11" LCD monitor keyboard

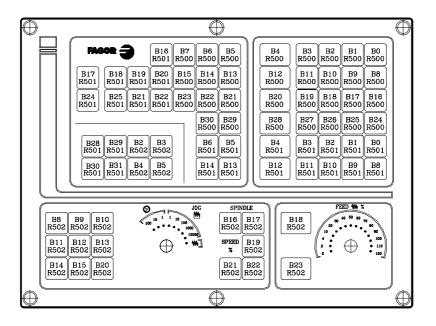

FAGOR

www.EngineeringBooksPdf.com

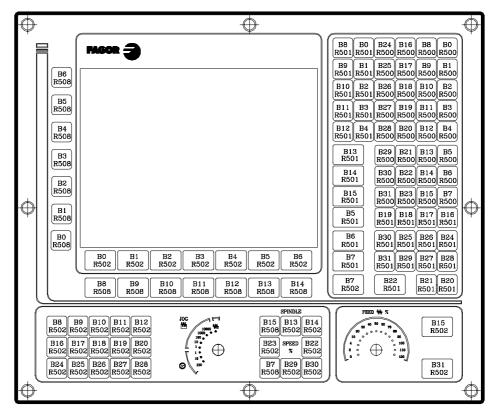
Appendix - page 7

14" color monitor keyboard

⊕ (
\$	
B0 B1 B2 B3 B4 B5 B6 R562 R562 R562 R562 R562 R562 B6 R562 R562 R562 R562 R562 R562 R562 R562	FAGOR
B9 B1 B25 B17 B9 B1 R861 R861 R860 R860 R860 R860 B10 B2 B26 B18 B10 B2 B11 B2 B26 B18 B10 B2 B11 B2 B26 B18 B10 B2 B13 B27 B19 B13 B3 R561 R560 R560 R560 R560 B12 B4 B28 B20 B12 B4 R561 R560 R560 R560 R560 B13 B29 B21 B13 B5 R561 R560 R560 R560 B14 B30 B22 B14 B6 B50 B19 B18 B7 R561 R561 R560 R560 B51 B19 B18 B17 B16 R561 R561 R561 R561 <t< td=""><td>B8 B0 B24 B16 B8 B0 R561 R560 R560 R560 R560</td></t<>	B8 B0 B24 B16 B8 B0 R561 R560 R560 R560 R560



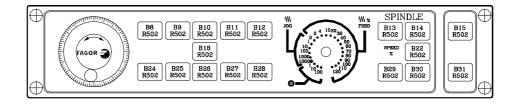
Keys inhibiting codes


With registers KEYDIS1 (R500), KEYDIS2 (R501) and KEYDIS3 (R502) it is possible to inhibit each key individually.

To inhibit a key, set the corresponding register bit high.

MC keyboard

11" LCD monitor keyboard



www.EngineeringBooksPdf.com

Appendix - page 9

14" color monitor keyboard

		B8 B0 B24 B16 B8 B0 R501 R500 R500 R500 R500 B9 B1 B25 B17 B9 B1 R501 R501 R500 R500 R500 R500
		B10 B2 B26 B18 B10 B2 R501 R501 R500 R500 R500 B11 B3 B27 B19 B1 B3 R501 R501 R500 R500 R500 B12 B4 B28 B20 B12 B4 R501 R501 R500 R500 R500
		B13 B29 B21 B13 B5 R501 R500 R500 R500 R500 B14 B30 B22 B14 B6 R501 R500 R500 R500 B13 B30 B22 B14 B6 R501 R500 R500 R500 B31 B23 B15 B7 R500 R500 R500 R500
\oplus	B0 B1 B2 B3 B4 B5 B6 R502 R502	B5 B19 B18 B17 B16 R501 R501 R501 R501 B6 B30 B25 B26 B24 R501 R501 R501 R501 R501 B7 B30 B25 B26 B24 R501 R501 R501 R501 B25 B7 B31 B39 B27 B28 R501 R501 R501 R501 B26

CNC 8055 MC Self-Teaching Manual

Ref. 9807 (ing)

INDEX

Chapter 1	Theory on CNC machines
1.1 Machine axes	
1.2 Machine reference zero and part zero	5
1.3 Home search	
1.4 Travel limits	7
1.5 Part zero setting	
1.6 Work units	9
Chapter 2	Theory on tools
2.1 Tool management	3
2.2 Tool table	4
2.3 Tool calibration	6
Chapter 3	Hands-on training
3.1 Screen and keyboard description	
3.1.1 Power-up	3
3.1.2 Keyboard description	
3.1.3 Description of the standard screen	6
3.1.4 Description of the auxiliary screen	7
3.2 Home search	
3.2.1 Maintaining the part zero	8
3.2.2 Without maintaining the part zero	
3.3 Spindle	
3.3.1 Speed ranges (gears)	
3.3.2 Spindle control	
3.4 Axis jog	
3.4.1 Handwheels	
3.4.2 JOG	14
3.4.3 Automatic axis movement to a particular pos	ition15
3.5 Tools	16
3.5.1 Tool selection	
3.5.2 Tool calibration	
3.5.3 How to change any data on the tool table	
3.5.4 Tool change point	
3.6 Checking for proper calibration	

Chapter 4	Automatic operations
4.1 Operation keys	
4.2 Work modes	5
4.3 Example of an automatic operation.	6
4.3.1 Edit an operation	6
4.3.1.1 Rectangular pocket	6
4.3.1.2 Associate a positioning with an operation	
4.3.2 Simulate an operation	9
4.3.3 Execute an operation	

Chapter 5	Summary of work cycles
5.1 Profile milling operation	2
5.2 Surface milling operation	
5.3 Pocket cycle with profile	
5.4 Rectangular and Circular boss milling cycle	5
5.5 Rectangular and Circular pocket milling cycle	6
5.6 Positioning	
5.7 Boring operation	9
5.8 Reaming operation	
5.9 Threading operation	
5.10 Drilling and Center punching operations	
5.11 Multiple positioning at several points	
5.12 Multiple positioning in a straight line	
5.13 Multiple positioning in an arc	
5.14 Multiple positioning in parallelogram pattern	n 17
5.15 Multiple positioning in grid pattern	
5.16 Profile editor	

Capítulo 6	Conversational part-programs
6.1 What is a conversational part-program?	
6.2 Edit a part-program	
6.3 Modify a part-program	7
6.4 Simulate/execute an operation	
6.5 Simulate/execute a part-program	
6.6 Simulate/execute starting at a particular operation	
6.7 Copy a part-program into another one	
6.8 Delete a part-program	

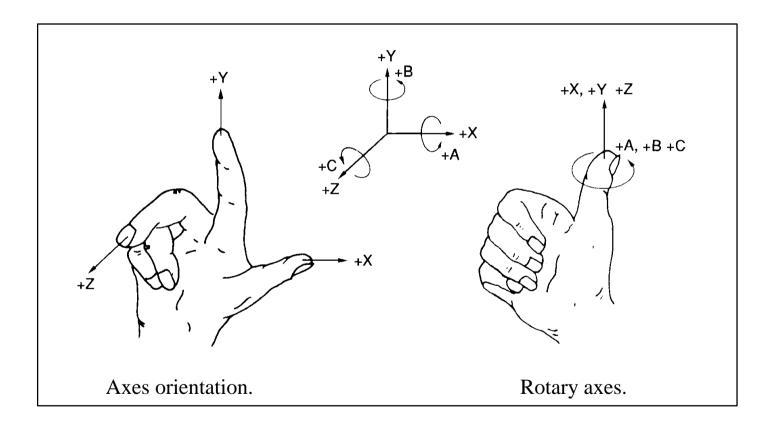
Appendix I	Programming example
Step 0: Part to be machined	2
Step 1: Surface milling	3
Step 2: Machining the profile	4
Step 3: Rectangular boss	5
Step 4: Circular pocket	6
Step 5: Rectangular pocket	7
Step 6: Center punching + multiple positioning at several points	
Step 7: Center punching + multiple positioning in parallelogram	n pattern9
Step 8: Drilling + multiple positioning at several points	
Step 9: Drilling + multiple positioning in parallelogram pattern	11
Step 10: Tapping + multiple positioning in parallelogram patter	m12
Step 11: Part-program	13

Chapter 1

Theory on CNC machines

This chapter describes:

- How to name the axes of the machine.
- What machine reference zero and part zero are.
- What "Home Search" is.
- What travel limits are.
- How to preset a part zero.
- Which are the work units.
 - > Programming units
 - > Spindle speed.
 - > Axis feedrate.

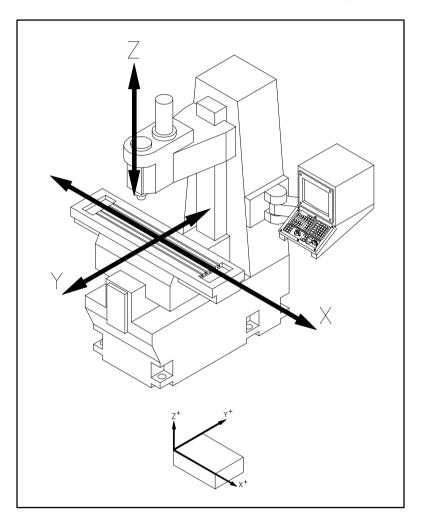


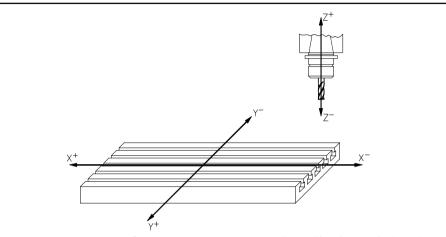
Self-teaching Manual

CNC 8055MC

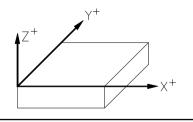
1.1 Machine Axes.

The orientation of the axes depends on the type of machine and are established by the "rule of the right hand".



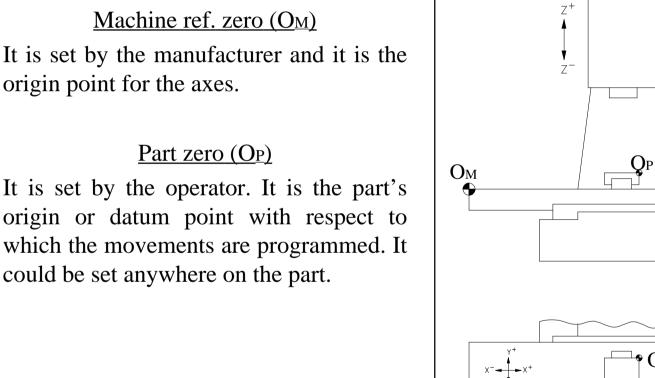


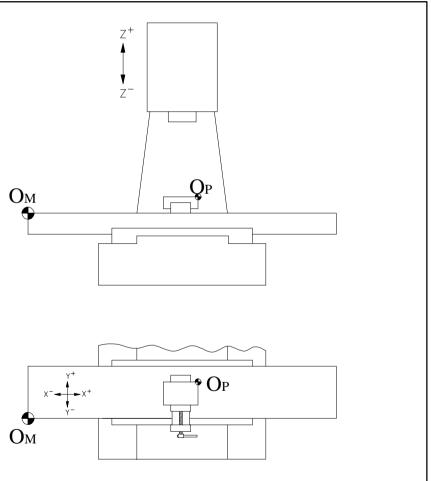
Self-teaching Manual


Chapter 1 Page 3

This manual uses the following axes configuration.

Two types of movements can be distinguished on a machine, those of the machine (X, Y) and that of the tool itself (Z). But for programming them, let us assume the movements of the tool with respect to the machine. Thus, the axes would be:

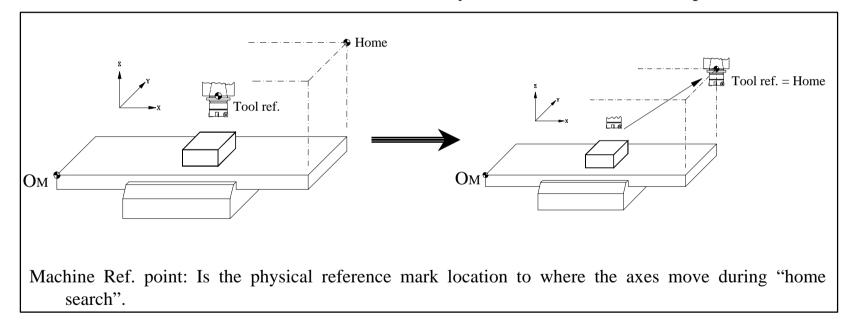



Self-teaching Manual

Chapter 1 Page 4

1.2 Machine reference zero and part zero.

They are the references the machine needs in order to work:


Self-teaching Manual

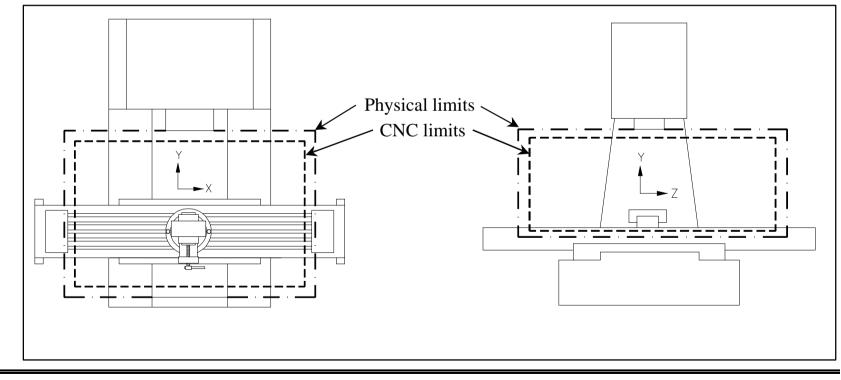
Chapter 1 Page 5

1.3 Home Search.

When the CNC is off, the axes may be moved by hand or by accident. In these situations, the CNC no longer keeps track of the real position of the axes. That is why a "Home Search" should be carried out on power-up.

When searching home, the axes move to the home point set by the manufacturer and the CNC assumes the value of the coordinates set by the manufacturer for that point.

NOTE: With the new feedback systems (with distance coded reference marks), it is possible to know the position of the axes by moving them a short distance. This way, the concept of Machine Reference (home) no longer applies.


Self-teaching Manual

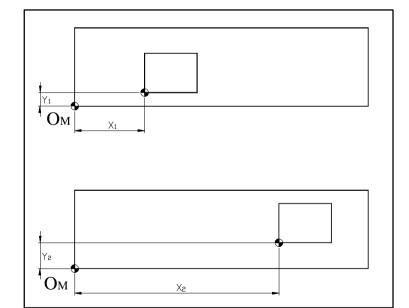
Chapter 1 Page 6

1.4 Travel limits.

There are two types of limits:

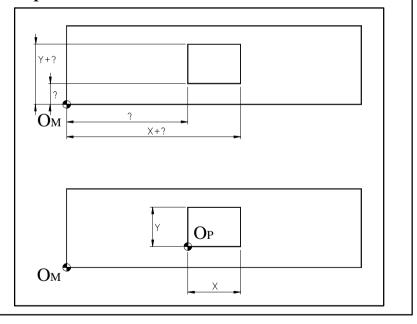
- Hard limits: Mechanical limits set on the machine to prevent the carriage from moving beyond the ways (cams and hardstops).
- CNC limits: Set at the CNC by the manufacturer to prevent the carriage from running into the machine's hard limits.

Self-teaching Manual


Chapter 1 Page 7

CNC 8055MC

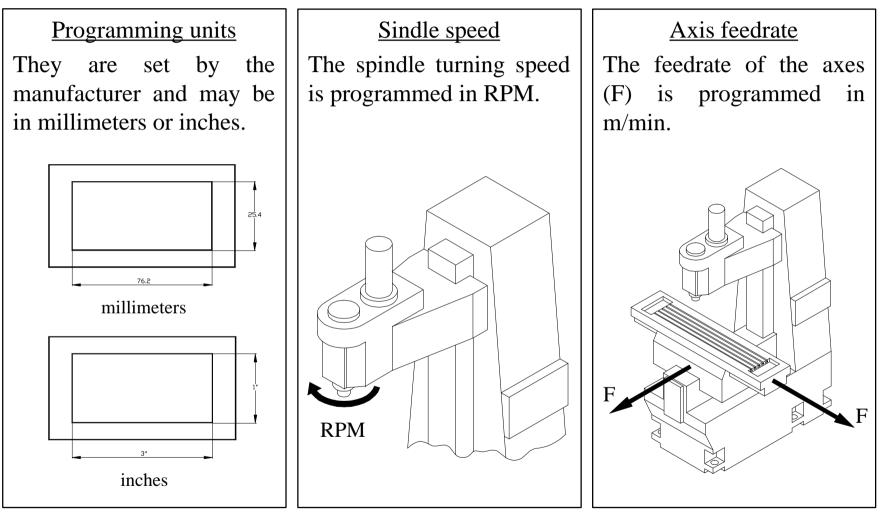
1.5 Part zero setting.


The Part zero is set on all three axes.

When machining several parts, the distance from Machine ref. zero (O_M) to the part is different for each one. A different program would be needed for each part. By programming from Part zero (O_P) , it would be independent of the actual location of the part.

Programming gets complicated when done from Machine ref. zero (O_M) and it is only good for that part in that particular location.

By programming from Part zero (O_P), the part dimensions may be taken straight from the blueprint.



Self-teaching Manual

Chapter 1 Page 8

1.6 Work units.

Self-teaching Manual

Chapter 1 Page 9

Chapter 2

Theory on tools

This chapter describes:

- What the tool turret is.
- What the tool table is and what information it contains.
- What tool presetting is.
- Defects due to errors in the tool table.
 - > Due to wrong tool calibration.
 - > Due to wrong tool radius values.

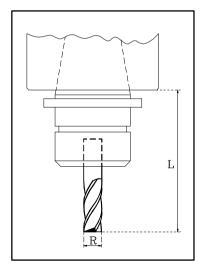
CNC 8055MC

2.1 Tool management.

The tools to be used with this CNC may be placed in a tool magazine. Depending on whether the machine has or not a tool magazine, the tool change may be carried out as follows:

- If the machine does not have a tool magazine, the tool change is manual (like on a conventional machine).
- If the machine has a tool magazine, the CNC manages the tool change automatically.

2.2 Tool table.


The tool data is stored in the tool table. When a tool change takes place, the CNC assumes the data set for that tool.

The data shown in the table is:

T: TOOL NUMBER

D: OFFSET ASSOCIATED WITH THE TOOL

It defines the tool dimensions.

- L: Tool length. R: Tool radius. J: Radius wear.
- K: Length wear.

Self-teaching Manual

Chapter 2 Page 4

NOMINAL LIFE

Machining time or number of operations that could be carried out with the tool.

REAL LIFE

Machining time or number of operations carried out.

FAMILY

Tools with similar characteristics.

STATUS

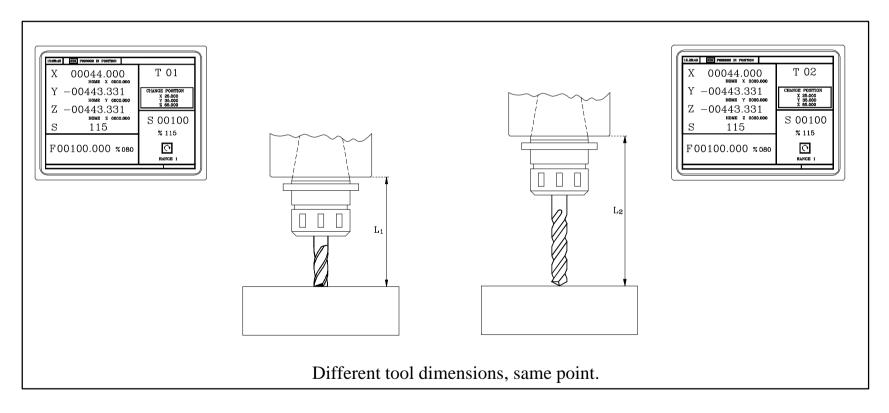
Tool type:

- •N: Normal.
- •S: Special.

Tool status:

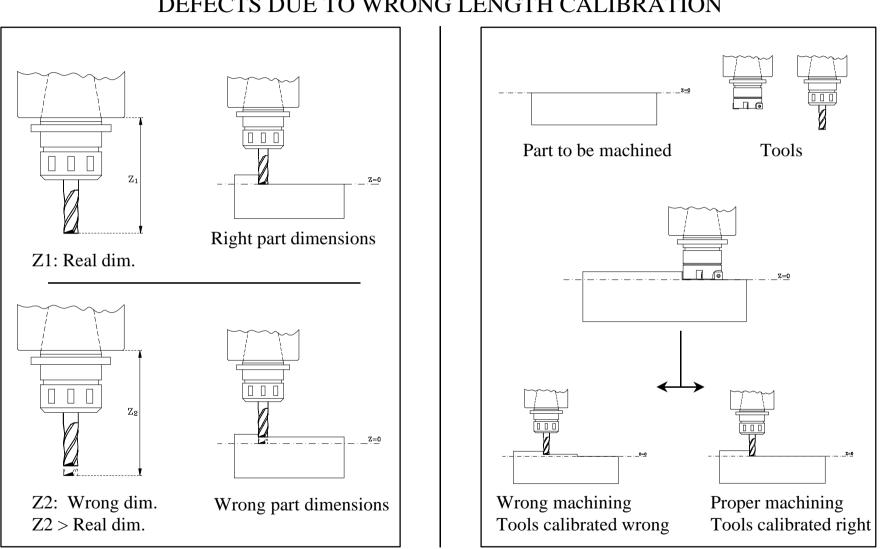
- •A: Available.
- •E: Expired. (Real life > Nominal life).
- •R: Rejected by the PLC.

This data is updated by the CNC. The operator cannot change them.


When requesting an expired or rejected tool, the CNC looks for a tool of the same family. If there is one, it will select it; if not, it will issue the corresponding error message.

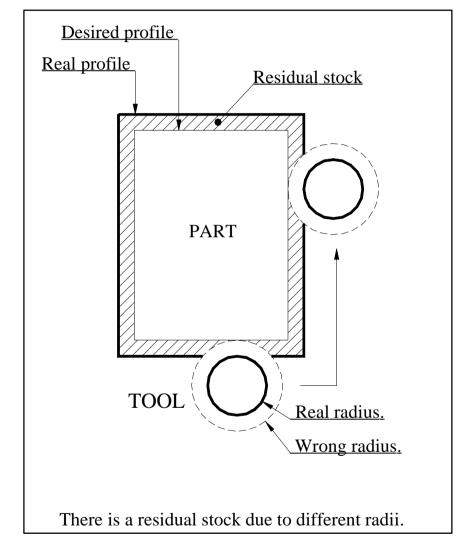
Self-teaching Manual

2.3 Tool calibration.


Tool calibration refers to the operation used to indicate to the CNC the length of the tool. This operation must be carried out properly so the parts come out with the right dimensions and the same point is controlled after a tool change.

Self-teaching Manual

Chapter 2 Page 6


DEFECTS DUE TO WRONG LENGTH CALIBRATION

Self-teaching Manual

Chapter 2 Page 7

DEFECTS DUE TO WRONG RADIUS VALUES

Self-teaching Manual

Chapter 2 Page 8

Chapter 3

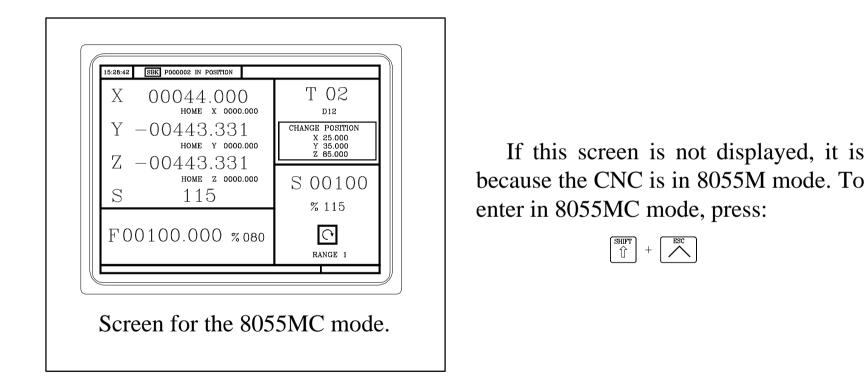
Hands-on training

This chapter describes:

- The keyboard and the screen.
- How to carry out a "Home Search".
 - > Maintaining the part zero.
 - > Without maintaining the part zero.
- How to operate with the spindle.

> What the speed ranges (gears) are.

- How to jog the axes. (Handwheels, incremental and continuous JOG, etc.)
- How to handle tools.
 - > Types of tool changer. (Manual or automatic).
 - > Tool calibration.
 - > Tool table.
 - > Tool change position.
- How to check the tool calibration.

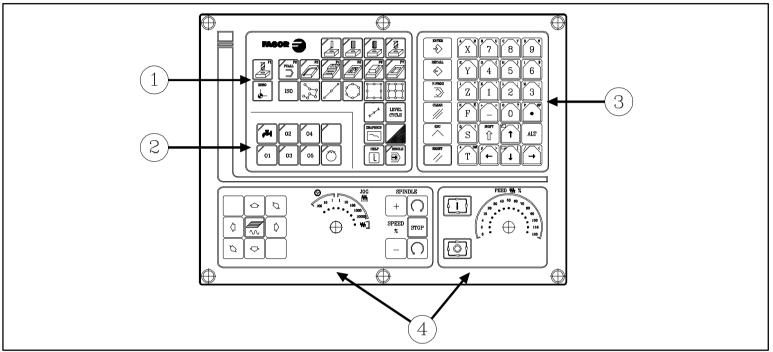

Self-teaching Manual

CNC 8055MC

3.1 Screen and keyboard description.

3.1.1 Power-up.

On power-up, the CNC will display the following screen.

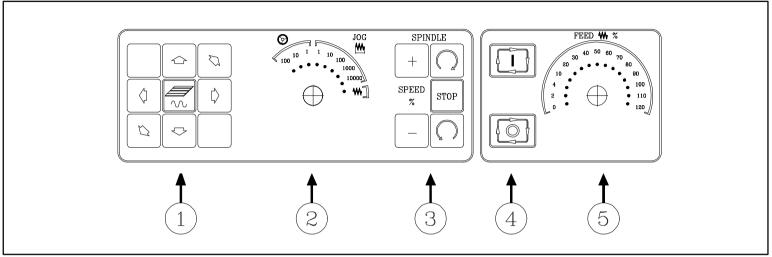

NOTE: Refer to the Operation Manual Chapter 2 Section 2.3

Self-teaching Manual

Chapter 3 Page 3

3.1.2 Keyboard description.

- 1.- Keys to define the machining operations.
- 2.- Keys for external devices.
- 3.- Alphanumeric keyboard and command keys.
- 4.-Operator panel.

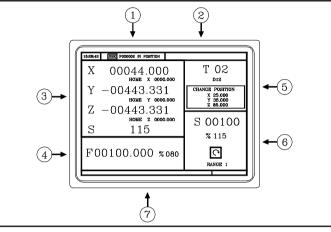

NOTE: Refer to the Operation Manual Chapter 2 Section 2.1

Self-teaching Manual

Chapter 3 Page 4

Description of the operator panel.

- 1.- Axes jogging keys.
- 2.- Work mode selector. (Continuous JOG (W), incremental JOG (M) or with handwheel ()).
- 3.- Selection of spindle turning direction (\color \color) and start-up. Spindle speed override percentage (+).
- 4.- Keys for CYCLE START (\square) and CYCLE STOP (\square).
- 5.- Axis feedrate override percentage.


NOTE: Refer to the Operation Manual Chapter 2 Section 2.1

Self-teaching Manual

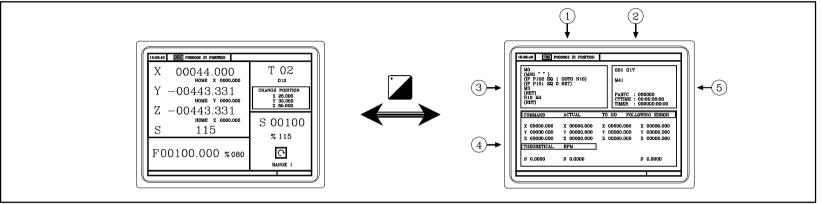
Chapter 3 Page 5

3.1.3 Description of the standard screen.

1.- Time, single-block/continuous execution, program number, execution status.

(In position, Execution, Interrupted or Reset) and PLC messages.

- 2.- CNC messages.
- 3.- Tool position referred to part zero and to home. Actual (real) spindle rpm.
- 4.- Selected axis feedrate and applied override %.
- 5.- Tool information.
- 6.- Spindle information. Selected speed and override percentage applied, maximum rpm and spindle status (turning clockwise, counter-clockwise or stopped) and active range.
- 7.- Help messages.


NOTE: Refer to the Operation Manual Chapter 3 Section 3.1

Self-teaching Manual

Chapter 3 Page 6

3.1.4 Description of the auxiliary screen.

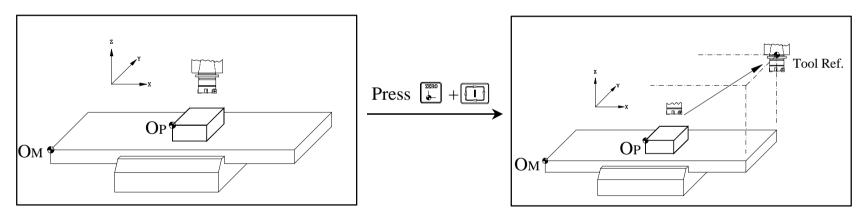
- 1.- Time, single block/continuous execution, program number, execution status. (In position, Execution, Interrupted or Reset) and PLC messages.
- 2.- CNC messages.
- 3.- Lines of the selected program.
- 4.- Axes movement information: Movement target point (COMMAND), current tool position (ACTUAL), remaining distance (TO GO) and difference between the theoretical axis position and its actual position (FOLLOWING ERROR or axis lag).

Spindle information: programmed theoretical speed, speed in rpm, speed in m/min.

5.- Status of the active G and M functions. Number of consecutive parts executed with the program (PARTC), execution time for a part or cycle time (CYTIME), and PLC clock (TIMER).

NOTE: Refer to the Operation Manual Chapter 3 Section 3.1

Self-teaching Manual


Chapter 3 Page 7

3.2 Home search.

After powering the machine up, carry out the "Home Search" just in case the axes of the machine have moved while the CNC was off. A "Home Search" can be carried out in two ways.

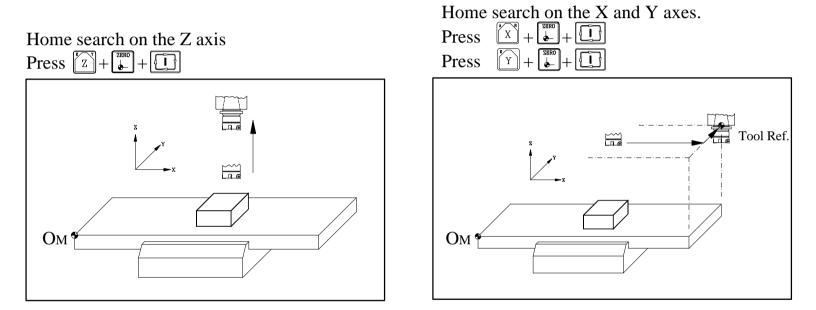
3.2.1 Maintaining the part zero.

The "Home Search" is carried out on the three axes at the same time.

The CNC does not know the position of the axes.

The CNC shows the coordinates referred to the OP considering the tool dimensions.

NOTE: Refer to the Operation Manual Chapter 3 Section 3.3


Self-teaching Manual

Chapter 3 Page 8

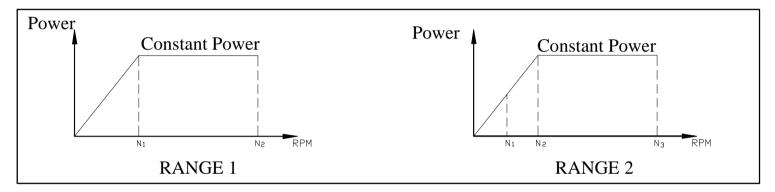
3.2.2 Without maintaining the part zero.

The "Home Search" is carried out on one axis at a time.

The CNC does not know the position of the axes.

The CNC shows the coordinates referred to OM, considering the tool dimensions.

NOTE: Refer to the Operation Manual Chapter 3 Section 3.3

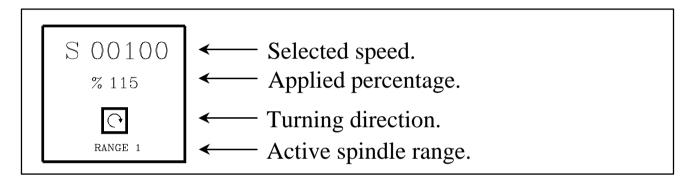

Self-teaching Manual

Chapter 3 Page 9

3.3 Spindle.

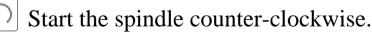
<u>3.3.1 Speed ranges (gears)</u>

With this CNC, the machine can have a gear box. By means of RANGES, we can choose the best gear ratio for the programmed spindle speed.


If the work speed is between N1 and N2, RANGE 1 should be used and if between N2 and N3, RANGE 2. Always try to work at constant power in order to extend tool life.

Self-teaching Manual

Chapter 3 Page 10


3.3.2 Spindle control. To select the work speed (in rpm), press: s + (turning speed) + tThe CNC shows the following information:

Use the following keys of the operator panel to start the spindle.

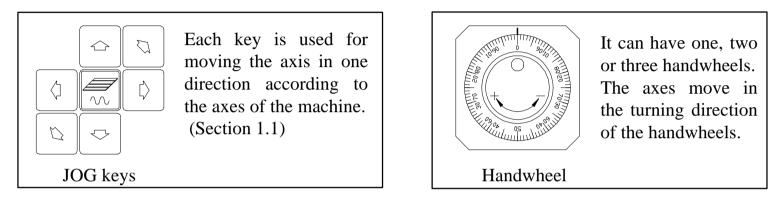
Start the spindle clockwise.

Stop the spindle.

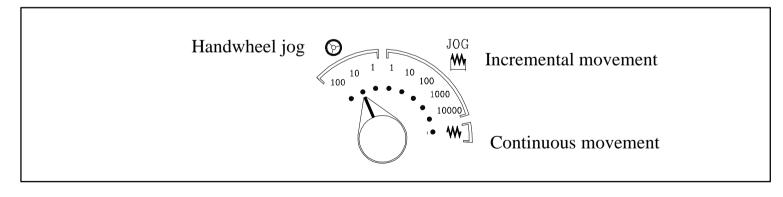
+ -

Increase or decrease the override percentage applied to the spindle turning speed.

NOTE: Refer to the Operation Manual Chapter 3 Section 3.6.1


Self-teaching Manual

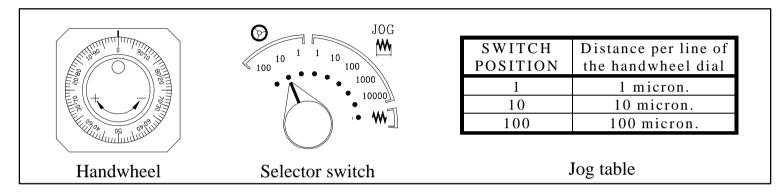
Chapter 3 Page 11


CNC 8055MC

3.4 Axis jog.

To jog the axes, we will use:

To select the jog mode, use the selector switch:



Self-teaching Manual

3.4.1 Handwheels.

– Select the jog mode with the selector switch. (position).

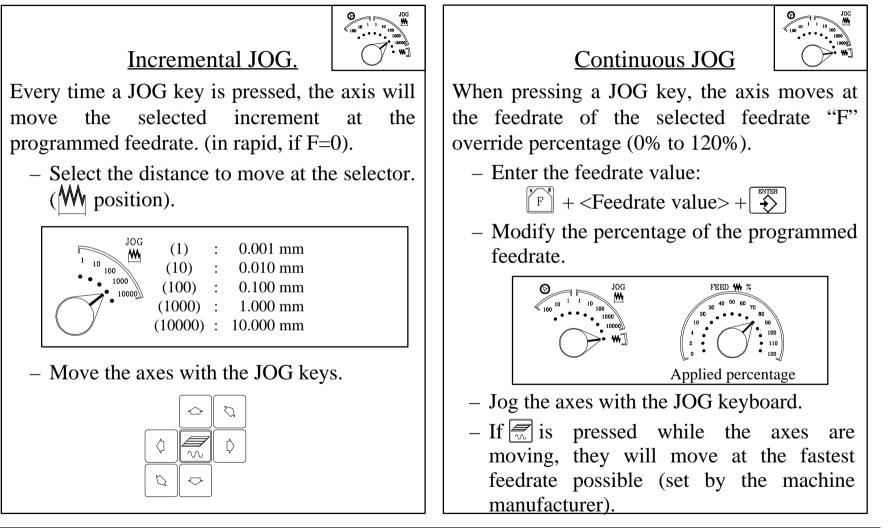
- Jog the axes with the handwheels.
 - If the machine has 1 handwheel:

Select an axis with the JOG keys.

The machine moves the axis as the handwheel is being turned.

• If the machine has 2 or more handwheels:

The machine moves an axis with each handwheel.


NOTE: Refer to the Operation Manual Chapter 3 Section 3.4.3

Self-teaching Manual

Chapter 3 Page 13

<u>3.4.2 JOG.</u>

NOTE: Refer to the Operation Manual Chapter 3 Section 3.4.1/3.4.2

Self-teaching Manual

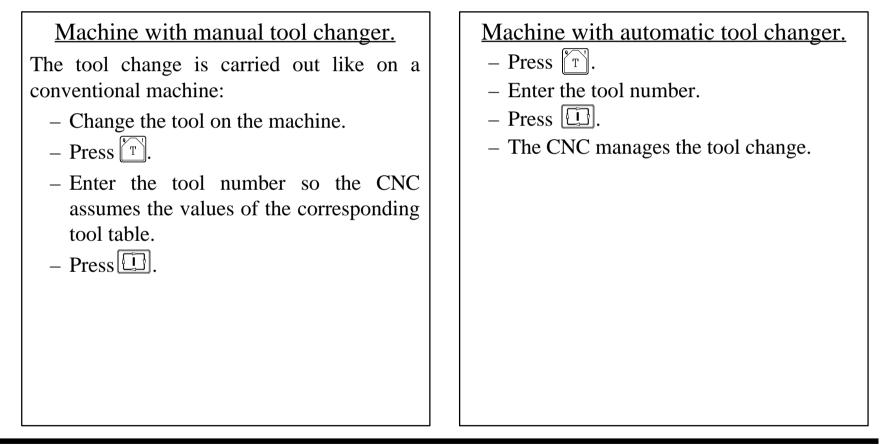
Chapter 3 Page 14

3.4.3 Automatic axis movement to a particular position.

By means of the 🛄 key, an axis may be moved to a particular coordinate. Follow these steps:

- Select the axis to be moved at the stantard screen. $x \dot{x} \dot{z}$
- Enter the value of the destination point.
- Press 🛄.

The axis will move to the programmed point at the selected feedrate.


Self-teaching Manual

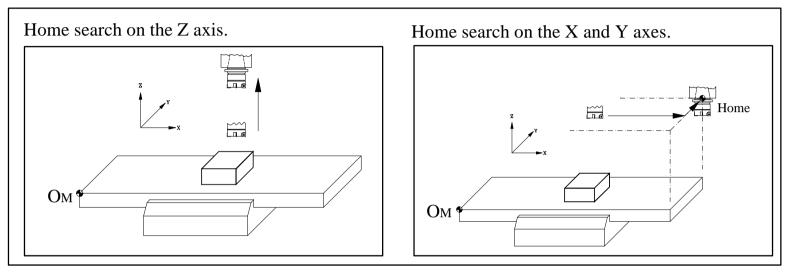
Chapter 3 Page 15

3.5 Tools.

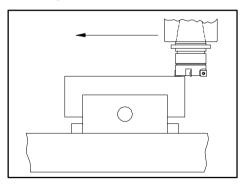
3.5.1 Tool selection.

Depending on the machine, there are two possibilities:

NOTE: Refer to the Operation Manual Chapter 3 Section 3.5.1

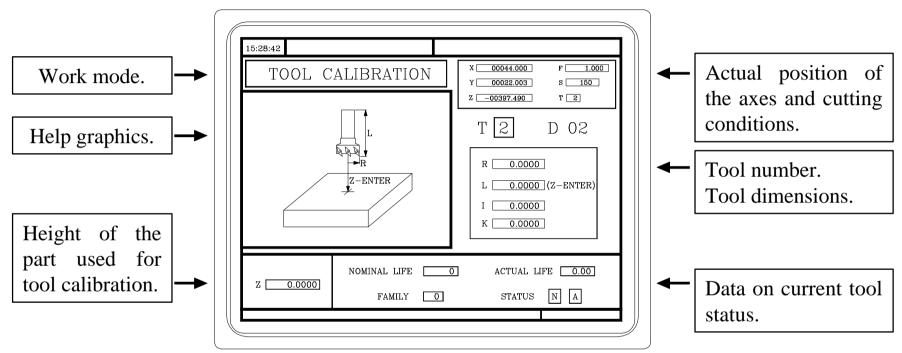


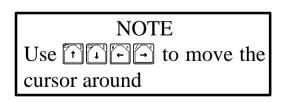
Self-teaching Manual


Chapter 3 Page 16

3.5.2 Tool calibration.

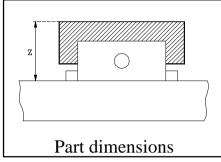
- Just before calibrating the tools, a "Home Search" must be carried out on all axes.

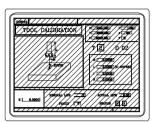

 A flat surface is needed for calibrating the tools. Use continuous JOG or handwheels for level milling the surface.



Self-teaching Manual

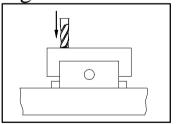
– Enter in the calibration mode. Press 🖉 . The CNC displays the tool calibration screen.


NOTE: Refer to the Operation Manual Chapter 3 Section 3.5.2


Self-teaching Manual

Chapter 3 Page 18

1.- Measure the part.


- Go to the tool calibration window.
- Enter the Z value.

- 2.- Start the spindle.
- 3.- Select the tool to be calibrated. The CNC will assign the same tool offset number (D).

T + (tool number) +

5.- Jog the axes until touching the part along the Z axis. Press:

The CNC calculates the length and

assigns it to the tool.

6.- Enter the rest of the data (Radius, Nominal life, Real life and family code). The K value is set to zero when calibrating.

To calibrate another tool, repeat steps 3, 4 and 5.

NOTE: Refer to the Operation Manual Chapter 3 Section 3.5.2.2

Self-teaching Manual

Chapter 3 Page 19

3.5.3 How to change any data on the tool table.

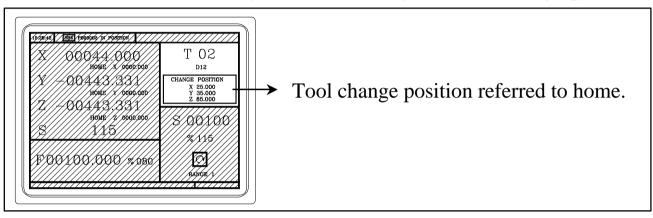
To change the values (T, D, R, L, I, K, Nominal Life, Real Life or Family), enter in the calibration mode and press:

 $\boxed{T} + (\text{Tool number}) + \underbrace{\bigstar}^{\text{RECALL}}$

The CNC shows the data for that tool. To change it, place the cursor over the value to be modified, key in the new value and press $\underbrace{\blacksquare}$.

To quit the calibration mode, press \checkmark

NOTE: Refer to the Operation Manual Chapter 3 Section 3.5.2.1



Self-teaching Manual

Chapter 3 Page 20

3.5.4 Tool change point.

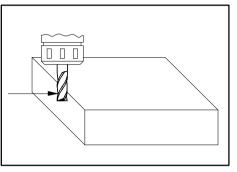
The machine manufacturer may allow selecting the tool change position.

Enter the X, Y and Z values of the point chosen as the tool change position.

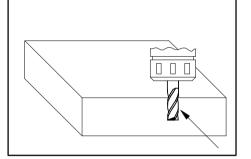
•
$$T$$
 + X + (X value) + 4
• T + Y + (Y value) + 4
• T + Y + (Y value) + 4
• T + Z + (Z value) + 4

When a tool change is required and if the machine manufacturer has set it this way, the CNC will move the axes to this position for a tool change.

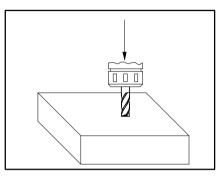
NOTE: Refer to the Operation Manual Chapter 3 Section 3.5.1.1

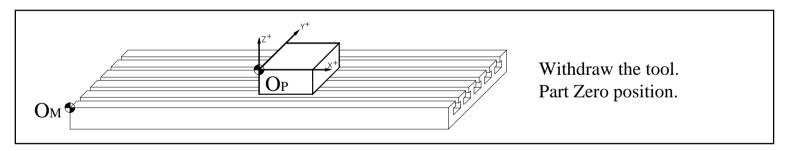


Self-teaching Manual


Chapter 3 Page 21

3.6 Checking for proper calibration.


– Preset the part zero.


Approach the tool along X. Press x + 0 + +

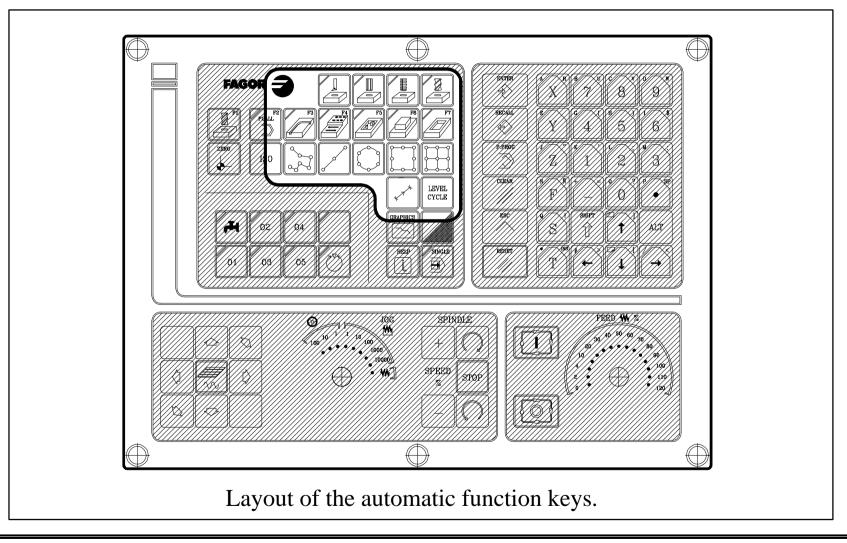
Approach the tool along Y. Press Y + 0 + +

Approach the tool along Z. Press $\boxed{z} + \boxed{0} + \boxed{\clubsuit}$

- Start the spindle, touch the part surface with several tools and check the values on the screen.
- The tools are different, but the values on the screen must be the same.

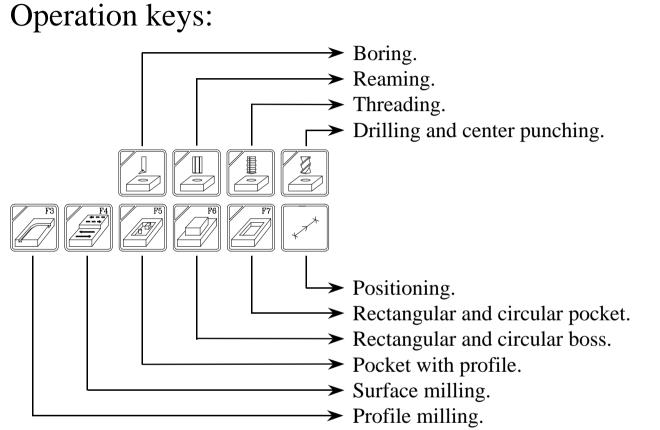
Self-teaching Manual

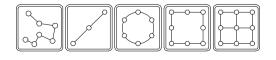
Chapter 4


Automatic Operations

This chapter describes:

- Which are the keys associated with the automatic operations.
- Which are the various work modes.
- Example of an operation and a positioning cycle.
 - > How to edit the parameters of the operation and what they mean.
 - > How to simulate an operation and which are the graphic parameters.
 - > How to execute an operation.
 - Tool inspection.
 - Tool wear compensation.


4.1 Operation keys.

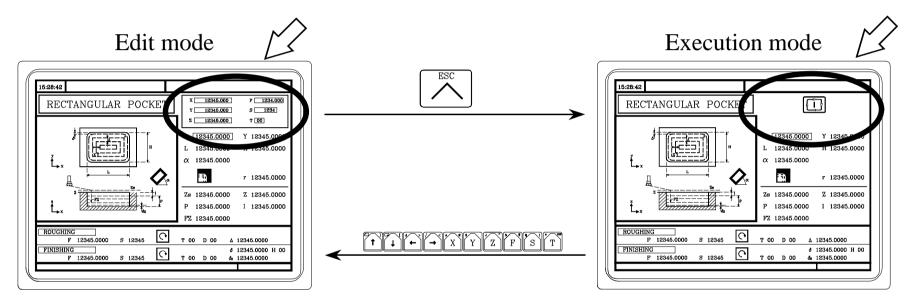

Self-teaching Manual

Chapter 4 Page 3

Selection of the cycle level within an operation

Used to associate a positioning cycle with Boring, Reaming, Threading, Drilling and Center punching operations.

Self-teaching Manual


Chapter 4 Page 4

Automatic operations

CNC 8055MC

4.2 Work modes.

There are 2 work modes:

Editing the parameters of the operation or cycle.

Simulation of an operation or cycle. (\square)

Simulation of an operation or cycle. (
Execution of an operation or cycle. (
)

NOTE: Refer to the Operation Manual Chapter 4 Section 4.2

Self-teaching Manual


Chapter 4 Page 5

FAGOR -

CNC 8055MC

4.3 Example of an automatic operation.

- 4.3.1 Edit an operation.
- 4.3.1.1 Rectangular pocket.

Use the LEVEL key to select the cycle level to be executed.
 (Only in certain operations).

Self-teaching Manual

– Set the operation data.

To select an icon (symbol), data or coordinate:

- Use the \uparrow \downarrow \leftarrow \rightarrow keys to move the cursor.
- Press x y or z. The CNC selects the first coordinate of the axis. Press it again to select the second coordinate.
- Press F. The CNC selects the roughing feedrate. Press it again to select the finishing feedrate.
- Press T. The CNC selects the roughing tool. Press it again to select the finishing tool.
- Press S. The CNC selects the roughing "S" data. Press it again to select the finishing "S" data. Press it again to select the maximum spindle speed.

After making this selection:

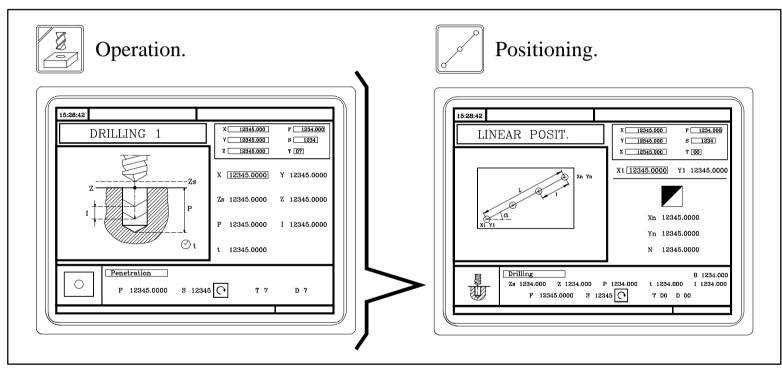
- If it is a data, key in the new value and press $\underbrace{\bullet}^{\text{INTER}}$.
- If it is an icon, press \checkmark until the desired one is selected and then \checkmark .
- If it is a coordinate, there are two possibilities:

-Key in the new value and press $\underbrace{+}^{\text{ENTRE}}$.

-Press 4 + 4. The CNC will take the current position of the axes as the value.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.1

Self-teaching Manual

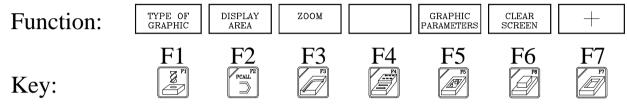

Chapter 4 Page 7

FAGOR :

ECNC 8055MC

4.3.1.2 Associate a positioning with an operation.

If it is a Boring, Reaming, Threading, Drilling or Center Punching operation, a positioning cycle may be associated with it. After setting the operation, choose the type of positioning. ($\square \square \square \square$).


Each positioning can be defined in several ways. To choose the right group of data, place the cursor over the icon and press \square .

Self-teaching Manual

4.3.2 Simulate an operation.

It is used for checking the tool path on the screen.

Press . The CNC will display the graphics menu. To access the various options, press their corresponding keys:

To begin simulating, press 🛄.

The simulating speed is selected with the FEED selector.

Other useful keys are:

- **()**: Interrupts the simulation. While interrupted:
 - : Resumes the simulation.
 - $\cancel{\mathbb{Z}}$: Stops the simulation.

 $\stackrel{\text{\tiny RSC}}{\frown}$ or $\stackrel{\text{\tiny RSC}}{\Box}$: Quits the simulation mode.

NOTE: Refer to the Operation Manual Chapter 6 Section 6.5

Self-teaching Manual

Chapter 4 Page 9

- Type of graphics.
 - "3D" Graphics.
 - The three-dimensional tool path is represented by color lines.
 - "XY, XZ, YZ" Graphics.
 - Color lines represent the tool path in the selected plane.
 - "Combined" Graphics.
 - The screen is divided into four quadrants showing the XY, XZ, YZ planes and the 3D view.
 - Top view.
 - It displays a solid XY plane indicating the depth of the part with different gray tones. It also shows two sections (XZ and YZ) of the part.
 - "Solid" Graphics.
 - It shows a three-dimensional part. Starting at an initial block. During simulation, the tool can be seen removing material as well as the resulting part.

• Display area.

It is possible to define the display area by setting the maximum and minimum axis coordinates.

-To set the coordinates, use TI.

–Once the data has been set, press $\underbrace{\clubsuit}$.

•<u>ZOOM.</u>

It is used for enlarging or reducing the drawing or part of it. The new display area is selected by means of a window superimposed on the shown tool path.

-To enlarge or reduce the drawing, use the keys for "ZOOM+" and "ZOOM-".

-To move the window around, use:
↑↓ + →

-For the CNC to assume the new values, press $\underbrace{\overset{\text{\tiny MTR}}{\overset{\text{\tiny MTR}}}}}$.

–To draw the selected section, press \square .

To return to the original display area, choose the INITIAL VALUE option.

Self-teaching Manual

• Graphic parameters.

Simulation speed: For selecting the % override of the simulation speed being applied.

Tool path colors: For changing the tool path colors on "3D", "XY, XZ, YZ" and "Top view" graphics.

Colors for solid graphics: For changing the colors of the tool and the part on "Top view" and "Solid" graphics.

•<u>Clear screen.</u>

It clears the screen. While in "Solid" graphics mode, it shows the part without being machined.

Self-teaching Manual

Chapter 4 Page 12

4.3.3 Execute an operation.

The operations can be executed from beginning to end or a pass at a time. This choice is made with $\boxed{\blacksquare}$.

Once the data has been entered, press $\boxed{\cite{C}}$. The CNC screen shows the Cycle Start key ($\boxed{\cite{L}}$) and lets execute the operation.

To start the execution, press **D**.

Once execution has started:

- **o**: Interrupts the execution. While interrupted, if we press:
 - : Resumes the execution.
 - $\frac{1}{2}$: Cancels the execution.

: Switches to graphics mode.

The execution can be interrupted at any time, except while making a thread. In that case, the execution will be interrupted at the end of the thread.

NOTE: Refer to the Operation Manual Chapter 6 Section 6.3/6.4

Self-teaching Manual

Chapter 4 Page 13

Tool inspection.

With this option, the operation may be interrupted for inspecting and replacing the tool or for modifying the tool wear value.

- Press 0.
- Depending on the machine manufacturer, on some machines in will also have to be pressed to get into tool inspection.
- The top of the CNC screen displays the message: INSPECTION. Jog the tool with the jog keys or the handwheels.
- Once in "Tool Inspection", it is possible to move the axes (JOG keys and handwheels), check or change the tool, stop or start the spindle, change the tool wear value, etc.
- Press 🛄 to reposition the axes. If more than one axis was moved, the CNC will request the repositioning order (sequence).
- Resume execution.

NOTE: Refer to the Operation Manual Chapter 6 Section 6.4.1

Self-teaching Manual

Chapter 4 Page 14

Modifying the tool wear value.

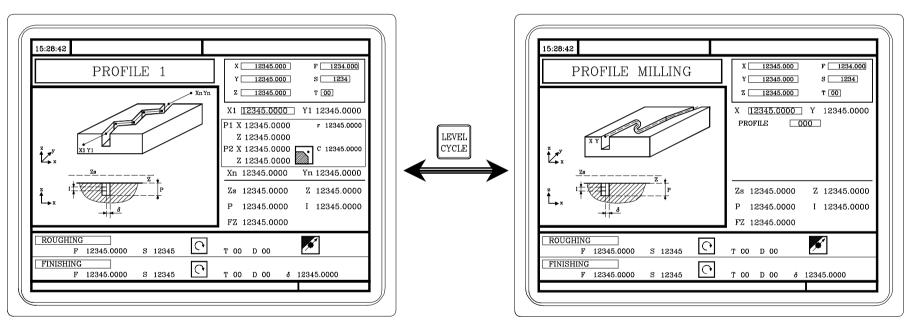
With this option, the J, K values may be changed. The entered values are incremental and will be added to those stored previously. This option may be executed during tool inspection or while the machine is running.

- Press . The CNC shows the table for that tool.
- Use the $\uparrow \downarrow \leftarrow \rightarrow$ keys to position the cursor over the J value.
- Key in the J value and press $\underbrace{\stackrel{\text{\tiny ENTER}}{\leftarrow}}$.
- Position the cursor over the K value.
- Key in the K value and press $\underbrace{\clubsuit}$.
- To change the offset of another tool, press:

$$\mathbf{T} + (\text{Tool Number}) + \mathbf{N}$$

− To finish, press [™].

NOTE: The modifications are not assumed until the tool is selected.



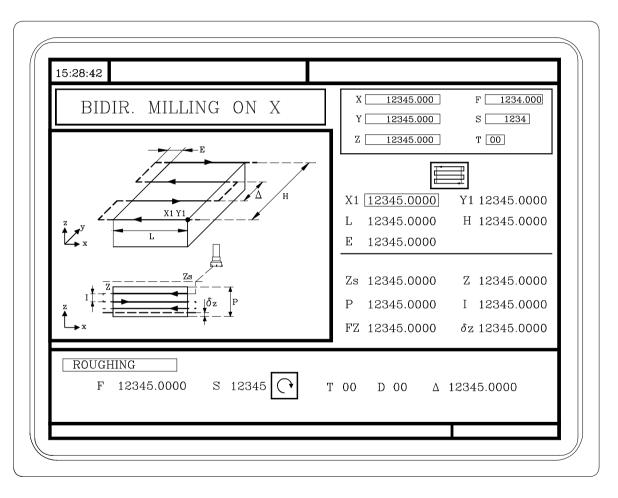
Self-teaching Manual

Chapter 5

Summary of work cycles

At this cycle level, the profile is defined by points. (Up to a maximum of 12 points).

At this cycle level, the profile is defined by the profile editor. (Section 5.16).

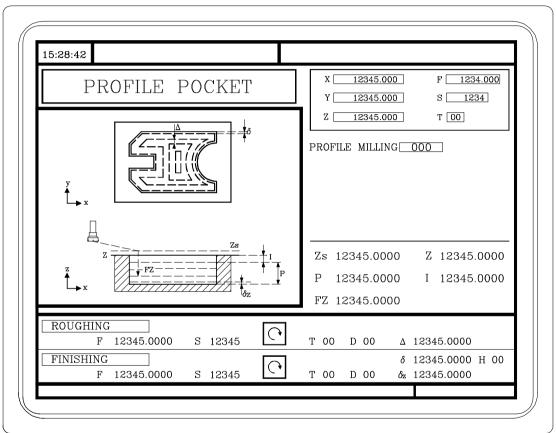

NOTE: Refer to the Operation Manual Chapter 4 Section 4.3

Self-teaching Manual

Chapter 5 Page 2

5.2 Surface milling operation.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.4

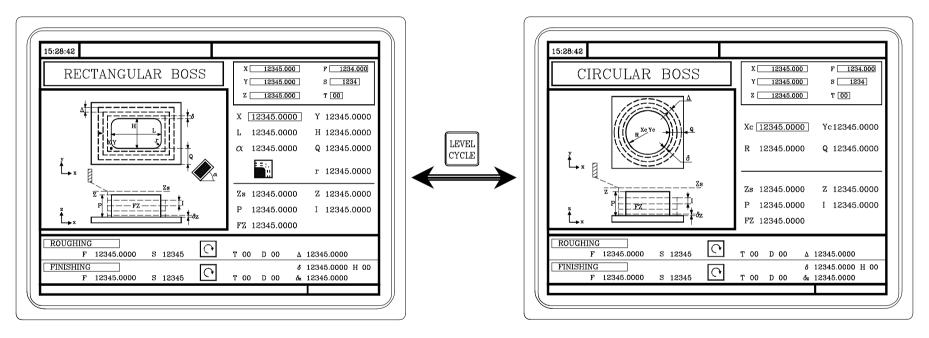


Self-teaching Manual

Chapter 5 Page 3

5.3 Pocket cycle with Profile.

The profile is generated with the profile editor (Section 5.16).


NOTE: Refer to the Operation Manual Chapter 4 Section 4.5

Self-teaching Manual

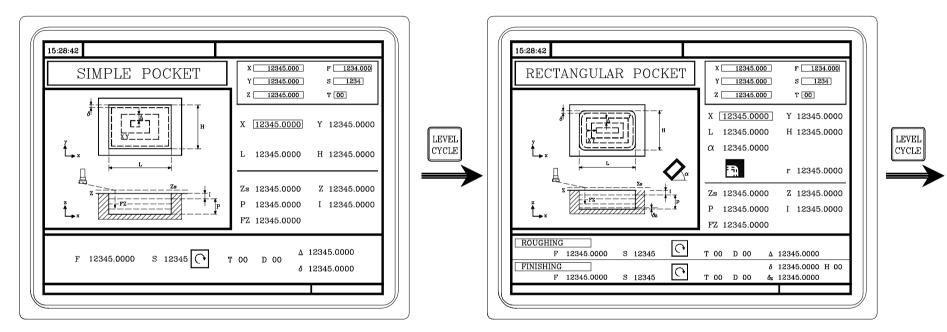
Chapter 5 Page 4

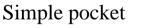
5.4 Rectangular and Circular Boss milling cycles.

Rectangular Boss

Circular Boss

NOTE: Refer to the Operation Manual Chapter 4 Section 4.6


Self-teaching Manual

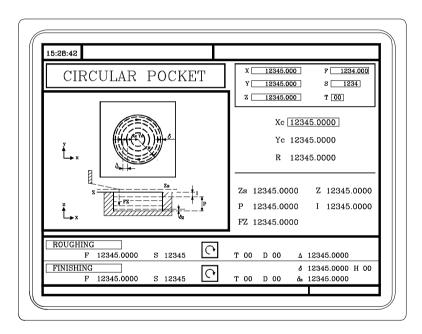

Chapter 5 Page 5

Summary of work cycles

CNC 8055MC

5.5 Rectangular and Circular pocket milling cycles.

Rectangular pocket


At this cycle level, the type of pocket corner may be chosen as well as the inclination angle of the pocket.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.7

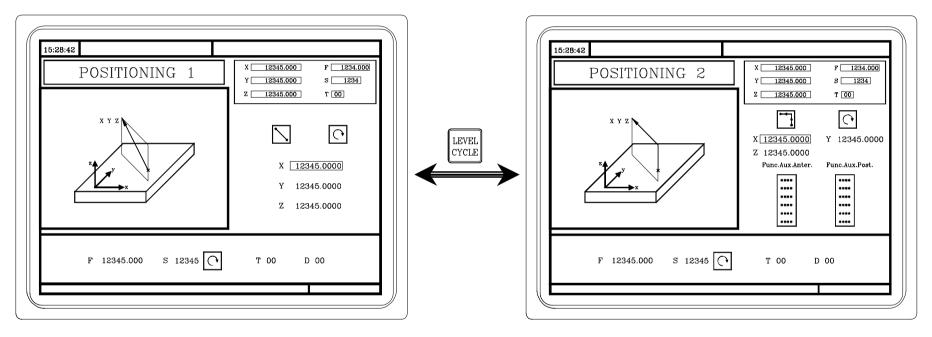
Self-teaching Manual

Chapter 5 Page 6

Circular pocket

NOTE: Refer to the Operation Manual Chapter 4 Section 4.7

Self-teaching Manual


Chapter 5 Page 7

CNC 8055MC

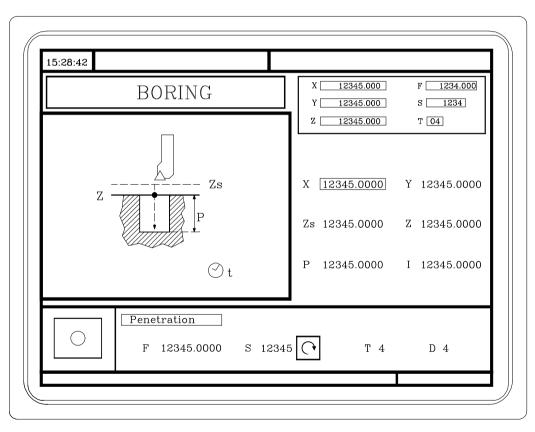
Summary of work cycles

 $CNC 8055MC \equiv$

5.6 Positioning.

At this cycle level, auxiliary functions may be defined to be executed before or after the movement.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.8

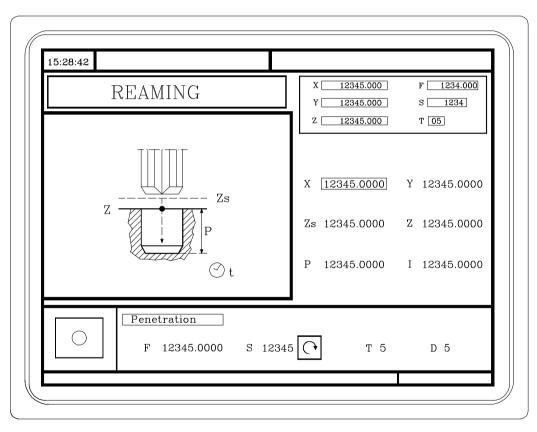

Self-teaching Manual

Chapter 5 Page 8

5.7 Boring operation.

This operation may be carried out at the indicated position (X,Y) or may be repeated at different positions using the \mathbb{RP} keys.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.9



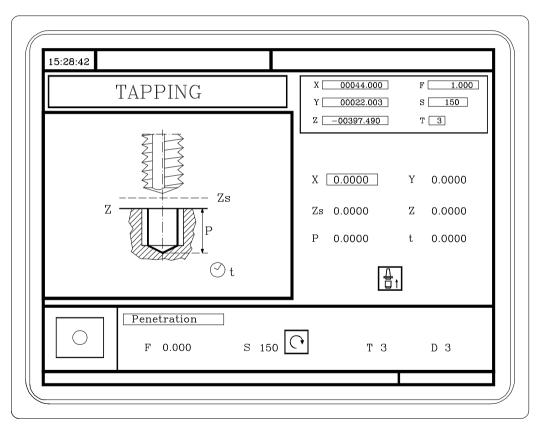
Self-teaching Manual

Chapter 5 Page 9

5.8 Reaming operation.

This operation may be carried out at the indicated position (X,Y) or may be repeated at different positions using the \mathbb{R}/\mathbb{C} keys.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.10

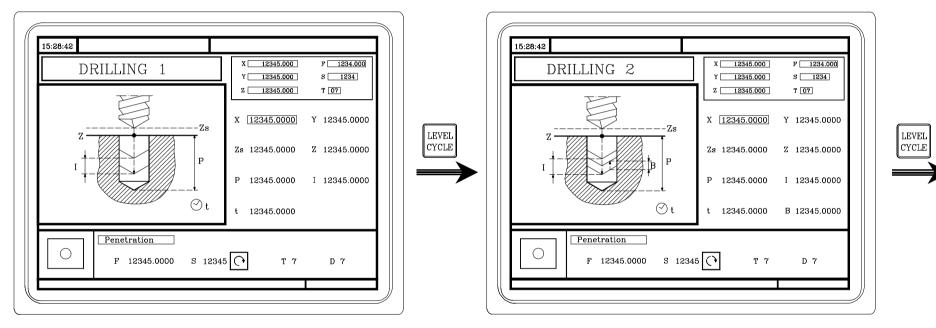

Self-teaching Manual

Chapter 5 Page 10

5.9 Threading operation.

This operation may be carried out at the indicated position (X,Y) or may be repeated at different positions using the \mathbb{RP} keys.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.11



Self-teaching Manual

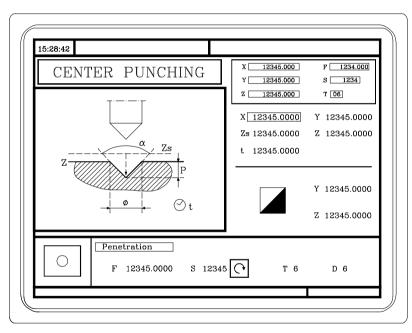
Chapter 5 Page 11

5.10 Drilling and Center punching operations.

These operations may be carried out at the indicated position (X,Y) or may be repeated at different positions using the \mathbb{RP} keys.

Drilling.

Drilling.


At this cycle level, one programs the distance the tool withdraws after each penetration (drilling peck).

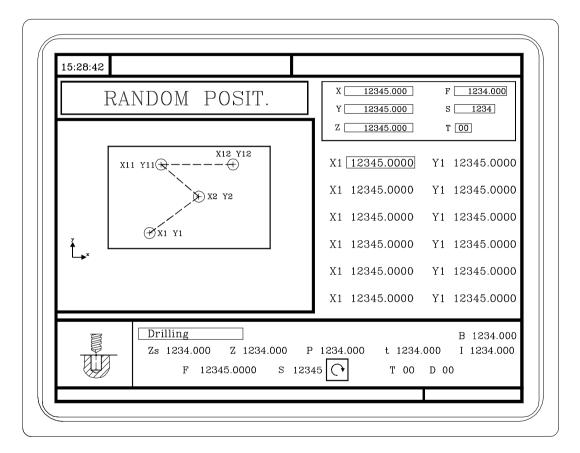
NOTE: Refer to the Operation Manual Chapter 4 Section 4.12

Self-teaching Manual

Chapter 5 Page 12

Center punching.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.12



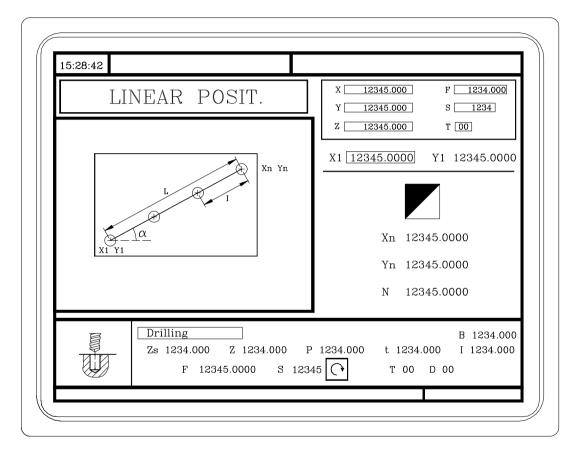
Self-teaching Manual

Chapter 5 Page 13

 $CNC 8055MC \equiv$

5.11 Multiple positioning at several points.

Only for Boring, Reaming, Drilling and Center punching operations.

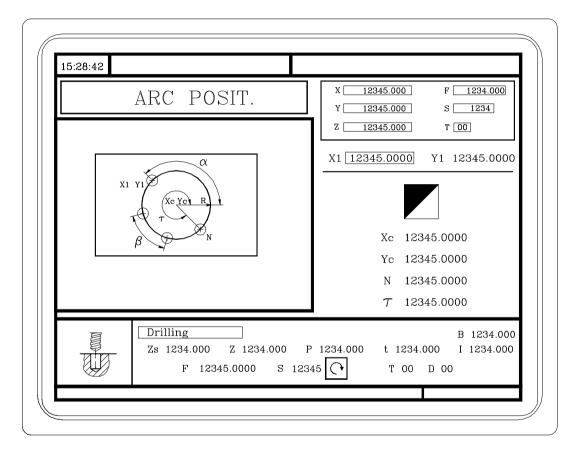

NOTE: Refer to the Operation Manual Chapter 4 Section 4.13.1

Self-teaching Manual

Chapter 5 Page 14

5.12 Multiple positioning in a straight line.

Only for Boring, Reaming, Drilling and Center punching operations.

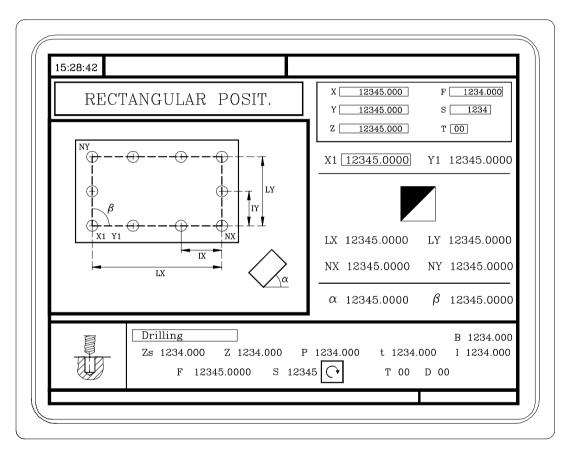

NOTE: Refer to the Operation Manual Chapter 4 Section 4.13.2

Self-teaching Manual

Chapter 5 Page 15

5.13 Multiple positioning in an arc.

Only for Boring, Reaming, Drilling and Center punching operations.

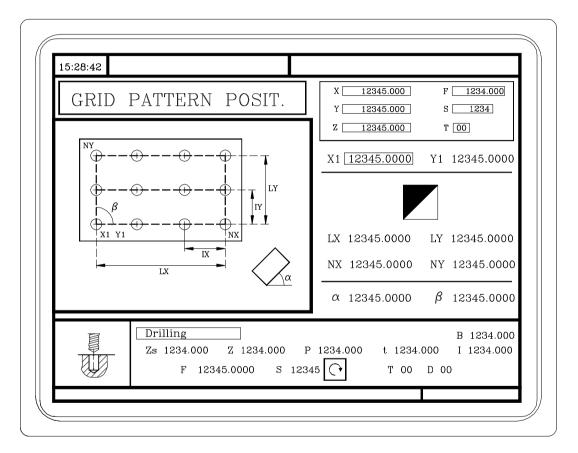

NOTE: Refer to the Operation Manual Chapter 4 Section 4.13.3

Self-teaching Manual

Chapter 5 Page 16

5.14 Multiple positioning in a parallelogram pattern.

Only for Boring, Reaming, Drilling and Center punching operations.


NOTE: Refer to the Operation Manual Chapter 4 Section 4.13.4

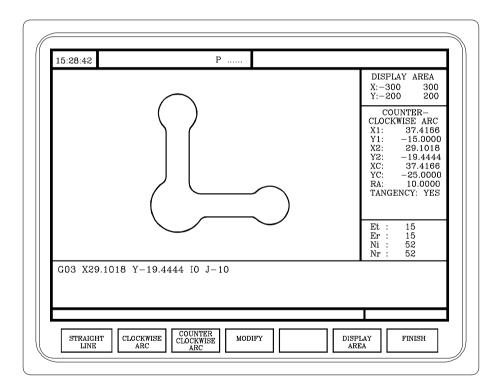
Self-teaching Manual

Chapter 5 Page 17

5.15 Multiple positioning in a grid pattern.

Only for Boring, Reaming, Drilling and Center punching operations.

NOTE: Refer to the Operation Manual Chapter 4 Section 4.13.5



Self-teaching Manual

Chapter 5 Page 18

5.16 Profile editor.

With the profile editor it is possible to define straight and circular sections of the profile (the editor solves the intersection and tangency problems) and then modify those sections by adding rounded corners, chamfers as well as tangential entries and exits.

It is used to define the "Profile milling" cycle and the "Pocket with profile" cycle.

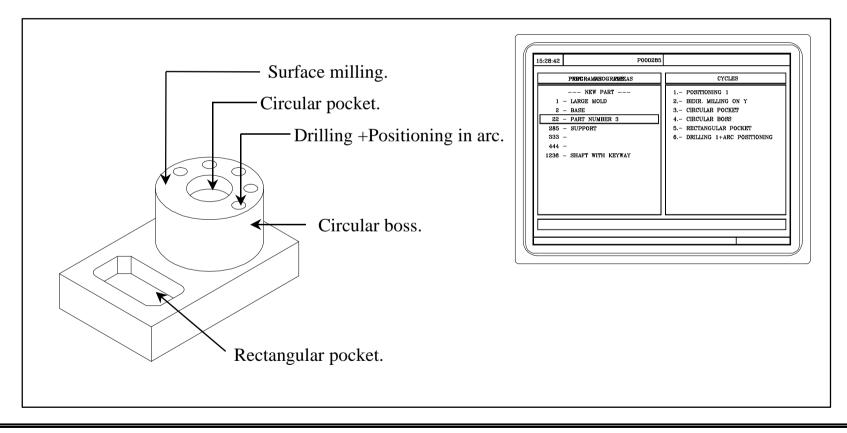
Self-teaching Manual

Chapter 6

Conversational part-programs

This chapter describes:

- What a conversational part-program is.
- How to edit it.
- How to change it. (Inserting or deleting operations).
- Simulate/execute an operation.
- Simulate/execute starting at a particular operation.
- Simulate/execute a part-program.
- Copy a part-program.
- Delete a part-program.


Self-teaching Manual

CNC 8055MC

6.1 What is a conversational part-program?

It is a set of operations ordered secuentially. Each operation is defined separately and they are then stored one after the other in a program.

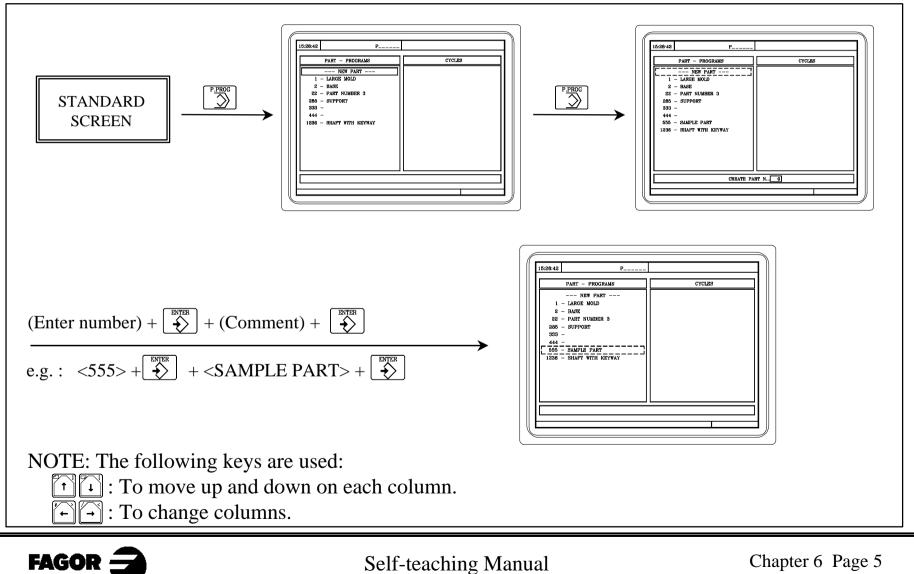
The name of the part-program can be any integer between 1 - 899999.

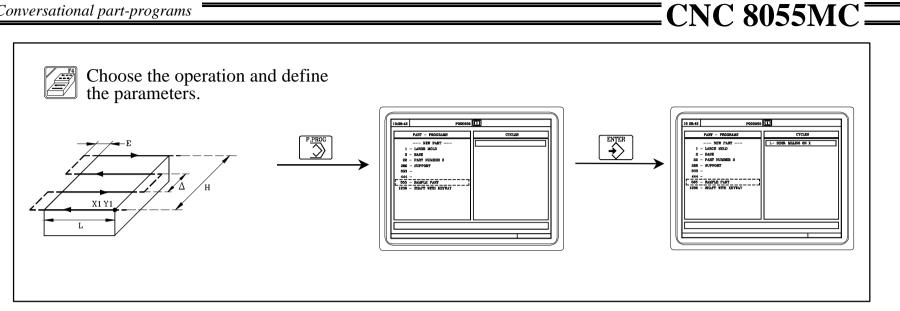
Self-teaching Manual

Chapter 6 Page 3

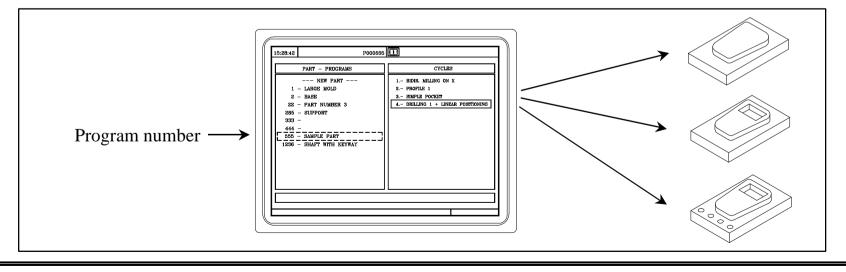
6.2 Edit a part-program.

To edit a part-program, we first choose the operations needed to execute the part. A part may be executed in various ways.


Self-teaching Manual

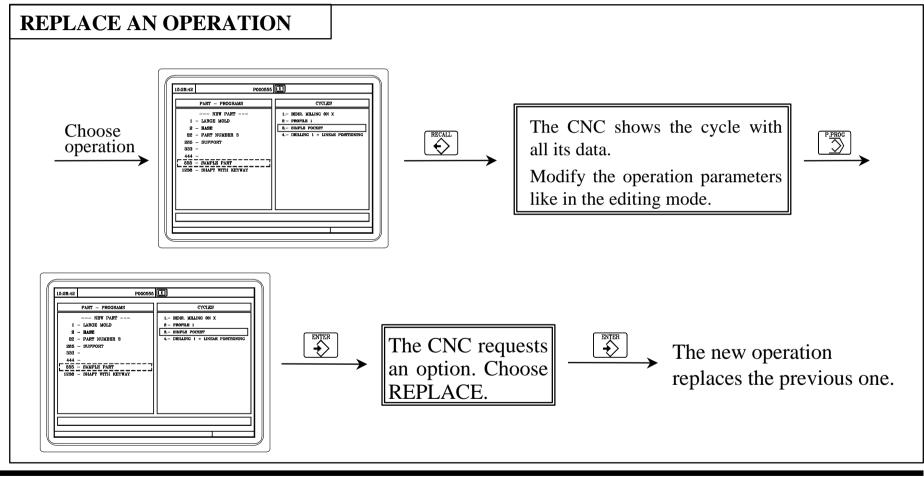

Chapter 6 Page 4

Conversational part-programs


ECNC 8055MC

Once the sequence of operations has been chosen, the part-program is built by editing the operations one by one.

Repeat these steps with the other operations. In our case, the finished part-program will be:

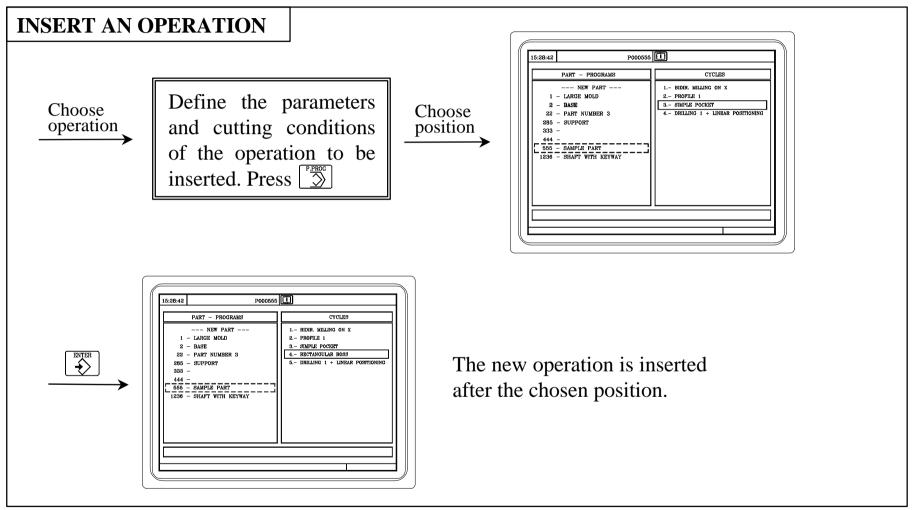


Self-teaching Manual

Chapter 6 Page 6

6.3 Modify a part-program.

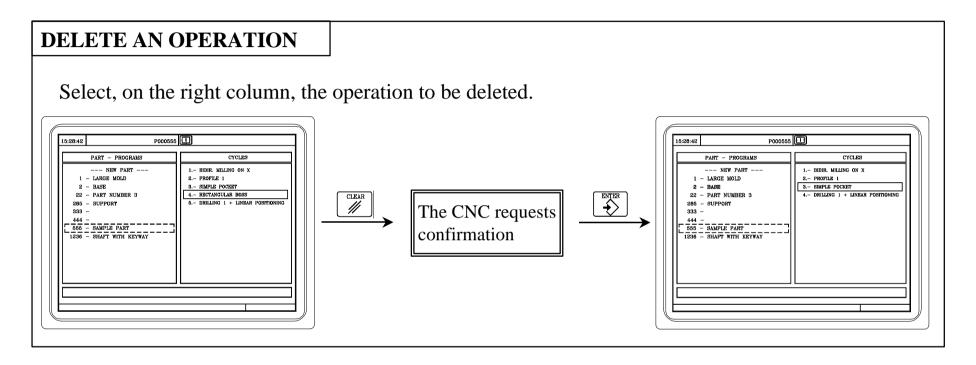
The operations making up a part-program can be modified.


NOTE: Refer to the Operation Manual Chapter 5 Section 5.6.4

Self-teaching Manual

Chapter 6 Page 7

New operations can also be inserted into a part-program.

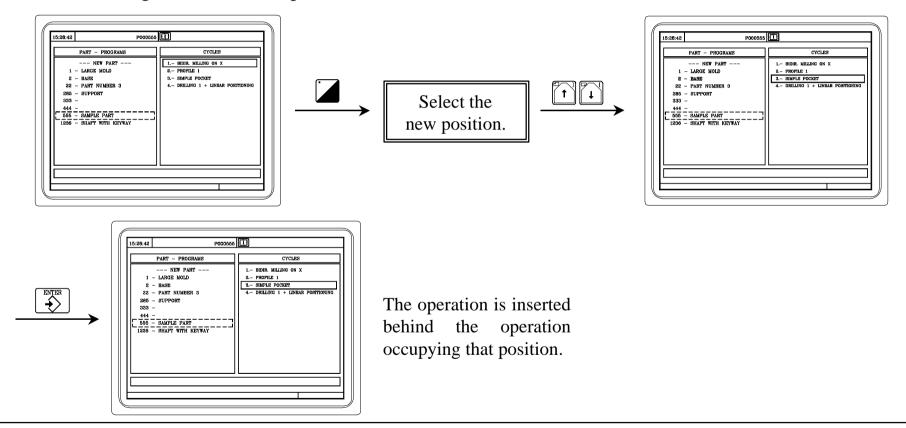

NOTE: Refer to the Operation Manual Chapter 5 Section 5.6.3

Self-teaching Manual

Chapter 6 Page 8

Operations can be deleted from a part-program.

NOTE: Refer to the Operation Manual Chapter 5 Section 5.6.1

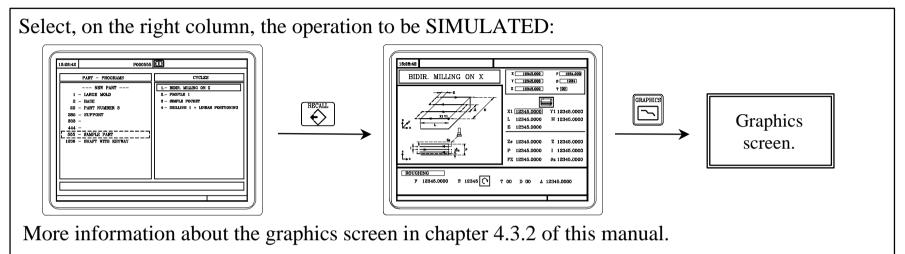

Self-teaching Manual

Chapter 6 Page 9

The position of an operation can also be changed.

CHANGE THE POSITION OF AN OPERATION

Select, on the right column, the operation to be moved.

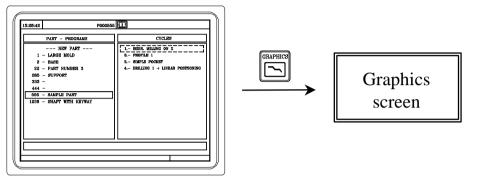

NOTE: Refer to the Operation Manual Chapter 5 Section 5.6.2

Self-teaching Manual

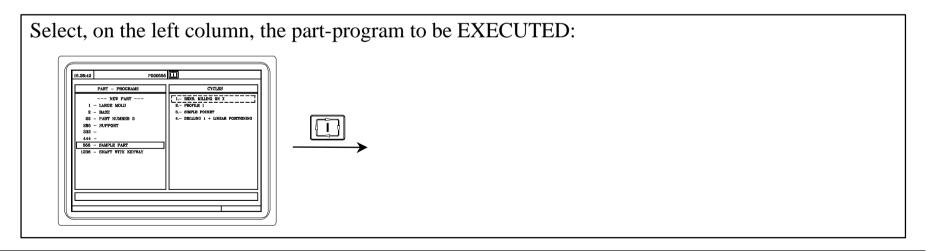
Chapter 6 Page 10

6.4 Simulate/execute an operation.

NOTE: Refer to the Operation Manual Chapter 6 Section 6.3



Self-teaching Manual

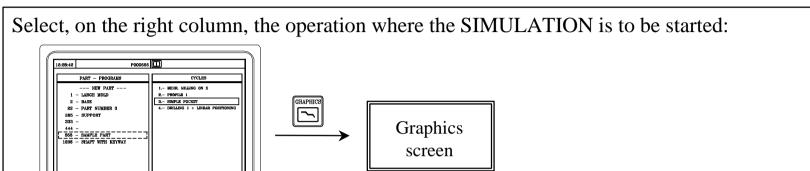

Chapter 6 Page 11

6.5 Simulate/execute a part-program.

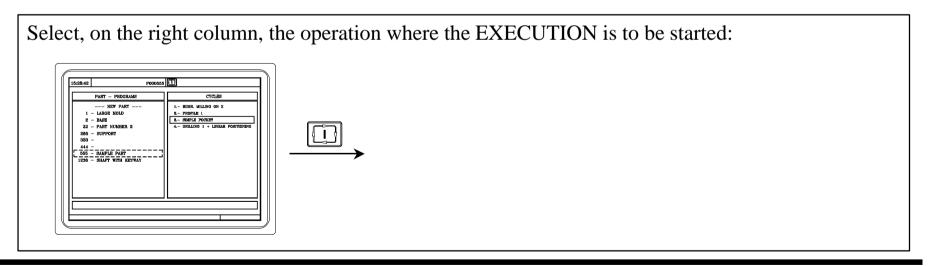
Select, on the left column, the part-program to be SIMULATED:

More information about the graphics screen in chapter 4.3.2 of this manual.

NOTE: Refer to the Operation Manual Chapter 6 Section 6.2

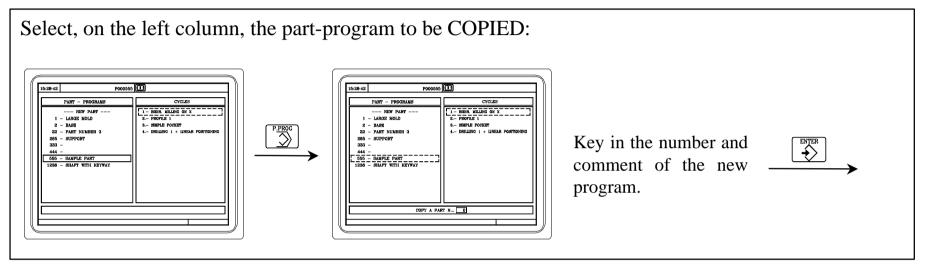


Self-teaching Manual


Chapter 6 Page 12

6.6 Simulate/execute starting at a particular operation.

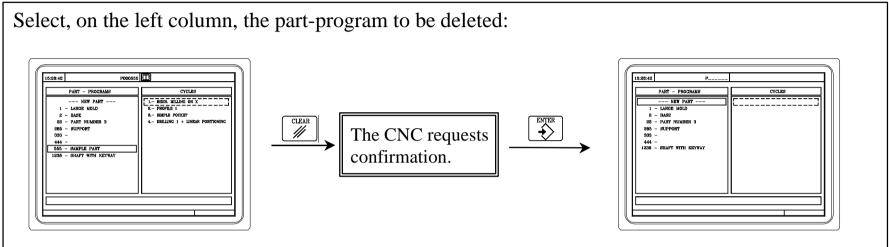
More information about the graphics screen in chapter 4.3.2 of this manual.


NOTE: Refer to the Operation Manual Chapter 6 Section 6.2.1

Self-teaching Manual

Chapter 6 Page 13

6.7 Copy a part-program into another one.

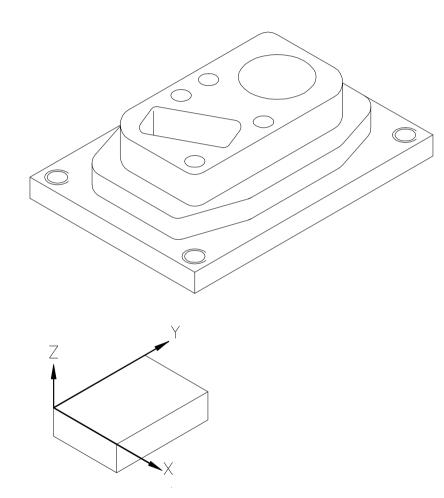

NOTE: Refer to the Operation Manual Chapter 5 Section 5.5

Self-teaching Manual

Chapter 6 Page 14

6.8 Delete a part-program.

NOTE: Refer to the Operation Manual Chapter 5 Section 5.4


Self-teaching Manual

Chapter 6 Page 15

Appendix I

Programming example

Step 0: Part to be machined.

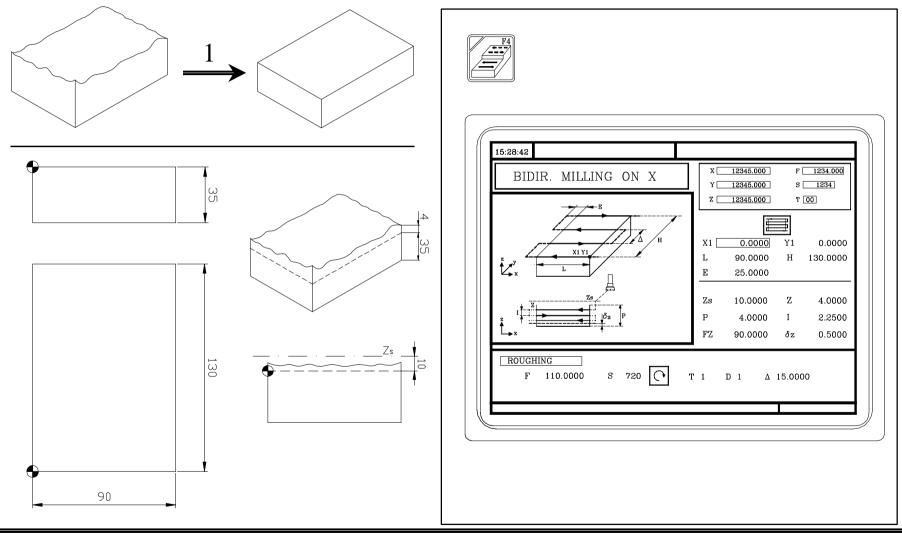
INITIAL CONSIDERATIONS

This chapter shows an example of how to create a part-program.

Remember that the tool number may be different depending on the machine. The tool used in this example are:

T1: Ø40 endmill.	T5: Ø8 drill
T2: Ø25 endmill.	T6: Ø5 drill.
T3: Ø10 endmill.	T7: M-6 tap.
T4: Center punch.	

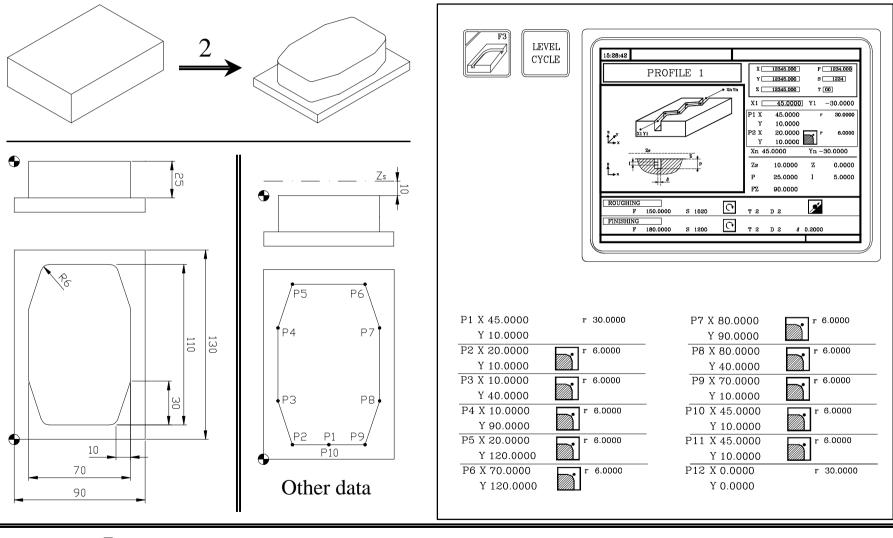
The spindle speed and axis feedrates are orientative and they may be other than the ones shown here.


The "Part zero" position is represented here by the \bigcirc symbol.

Self-teaching Manual

Appendix I. Page 2

Step 1: Surface milling.

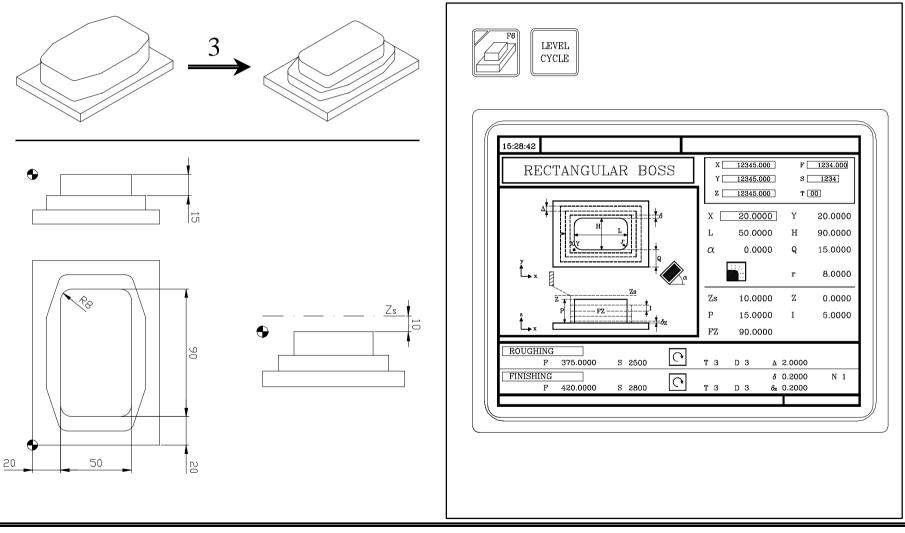


Self-teaching Manual

Appendix I. Page 3

 $CNC 8055MC \equiv$

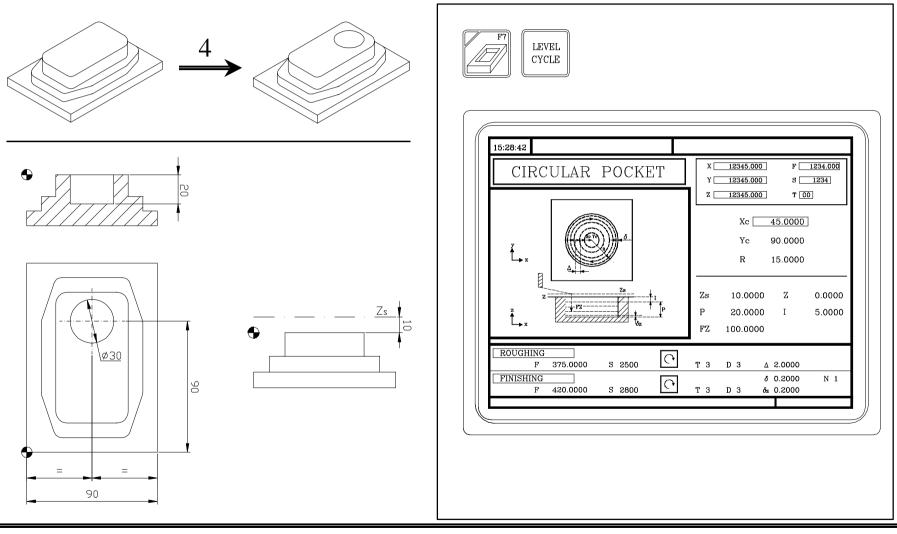
Step 2: Machining the profile.



Self-teaching Manual

Appendix I. Page 4

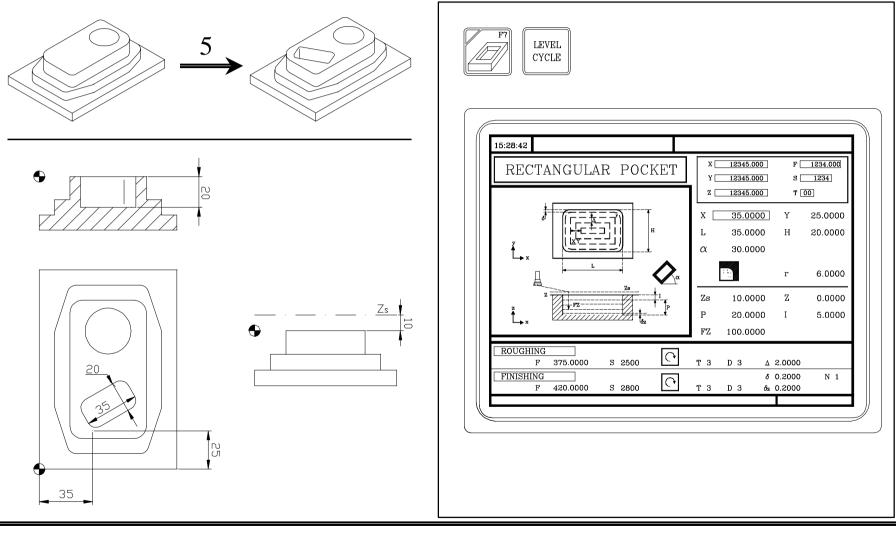
Step 3: Rectangular boss.



Self-teaching Manual

Appendix I. Page 5

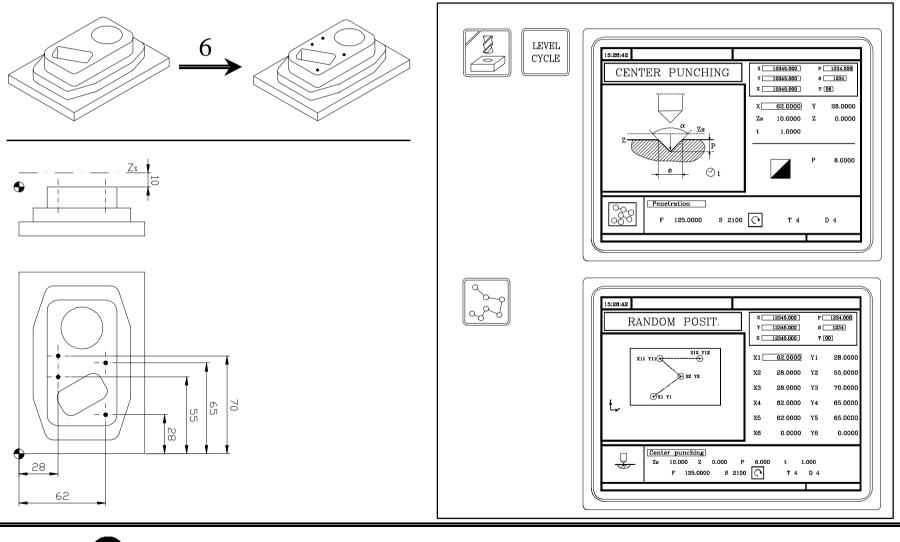
Step 4: Circular pocket.



Self-teaching Manual

Appendix I. Page 6

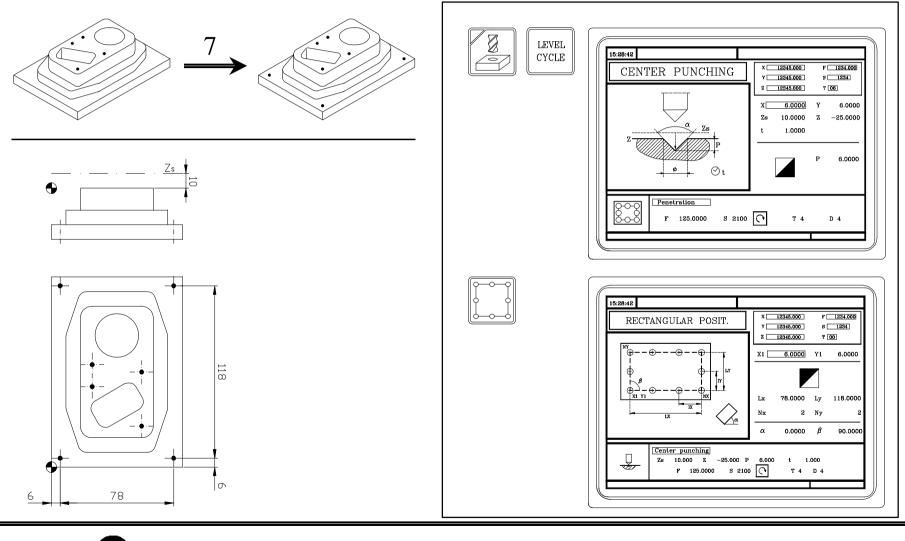
Step 5: Rectangular pocket.



Self-teaching Manual

Appendix I. Page 7

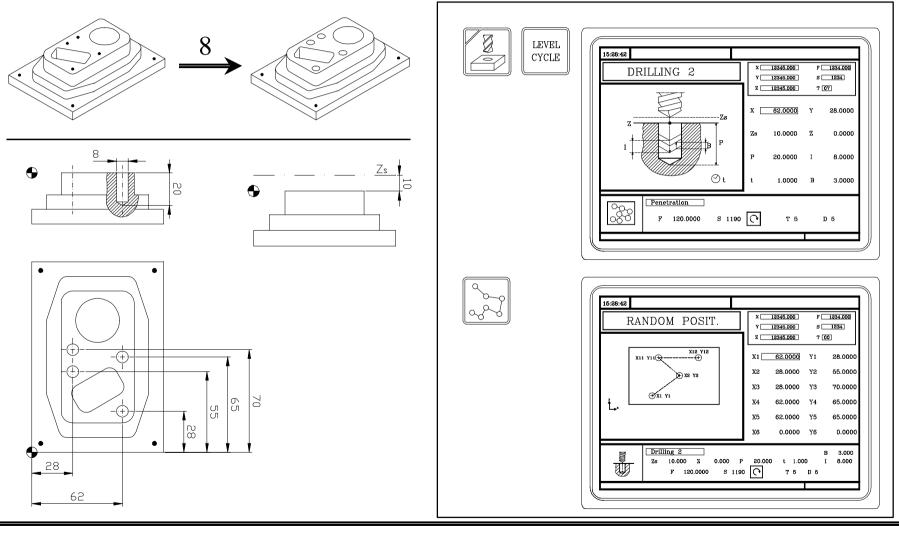
<u>Step 6: Center punching + Multiple positioning at several points.</u>



Self-teaching Manual

Appendix I. Page 8

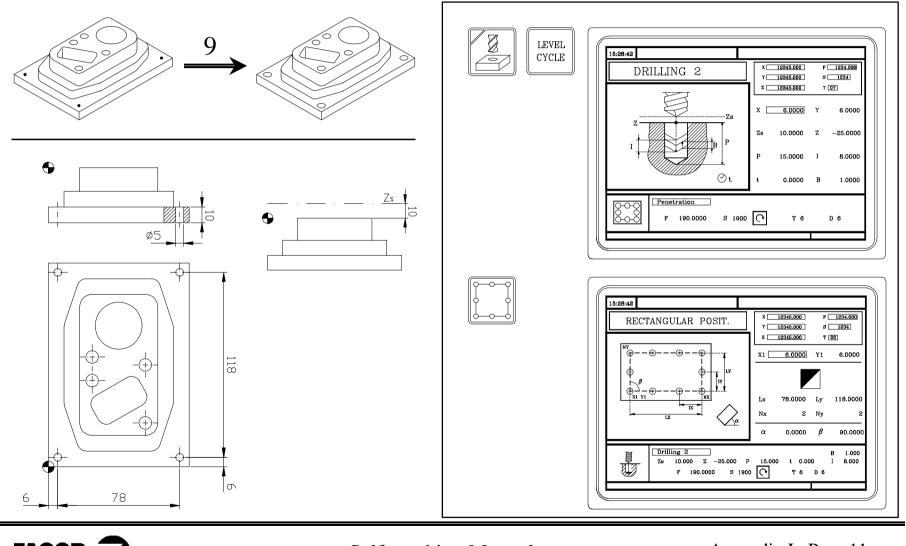
<u>Step 7: Center punching + Multiple positioning in parallelogram pattern.</u>



Self-teaching Manual

Appendix I. Page 9

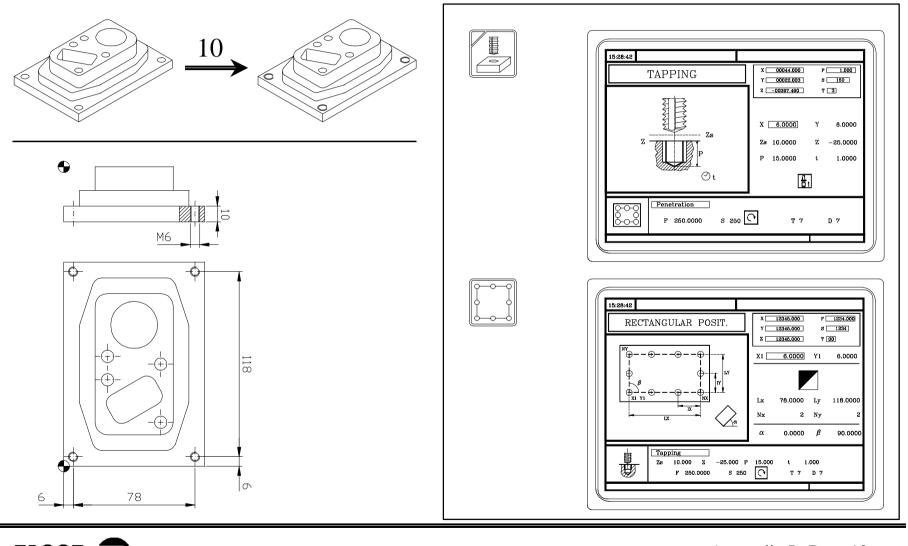
<u>Step 8: Drilling + multiple positioning at several points.</u>



Self-teaching Manual

Appendix I. Page 10

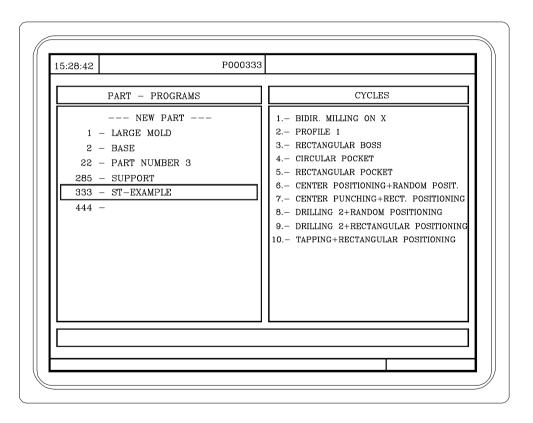
Step 9: Drilling + multiple positioning in parallelogram pattern.



Self-teaching Manual

Appendix I. Page 11

<u>Step 10: Tapping + multiple positioning in parallelogram pattern.</u>



Self-teaching Manual

Appendix I. Page 12

Step 11: Part-program.

Once the operations have been entered, the part program will be like this:

Self-teaching Manual